242 research outputs found

    Prevalence and Predictors of Urinary Tract Infection and Severe Malaria Among Febrile Children Attending Makongoro Health Centre in Mwanza City, North-Western Tanzania.

    Get PDF
    In malaria endemic areas, fever has been used as an entry point for presumptive treatment of malaria. At present, the decrease in malaria transmission in Africa implies an increase in febrile illnesses related to other causes among underfives. Moreover, it is estimated that more than half of the children presenting with fever to public clinics in Africa do not have a malaria infection. Thus, for a better management of all febrile illnesses among under-fives, it becomes relevant to understand the underlying aetiology of the illness. The present study was conducted to determine the relative prevalence and predictors of P. falciparum malaria, urinary tract infections and bacteremia among under-fives presenting with a febrile illness at the Makongoro Primary Health Centre, North-Western Tanzania. From February to June 2011, a cross-sectional analytical survey was conducted among febrile children less than five years of age. Demographic and clinical data were collected using a standardized pre-tested questionnaire. Blood and urine culture was done, followed by the identification of isolates using in-house biochemical methods. Susceptibility patterns to commonly used antibiotics were investigated using the disc diffusion method. Giemsa stained thin and thick blood smears were examined for any malaria parasites stages. A total of 231 febrile under-fives were enrolled in the study. Of all the children, 20.3% (47/231, 95%CI, 15.10-25.48), 9.5% (22/231, 95%CI, 5.72-13.28) and 7.4% (17/231, 95%CI, 4.00-10.8) had urinary tract infections, P. falciparum malaria and bacteremia respectively. In general, 11.5% (10/87, 95%CI, 8.10-14.90) of the children had two infections and only one child had all three infections. Predictors of urinary tract infections (UTI) were dysuria (OR = 12.51, 95% CI, 4.28-36.57, P < 0.001) and body temperature (40-41 C) (OR = 12.54, 95% CI, 4.28-36.73, P < 0.001). Predictors of P. falciparum severe malaria were pallor (OR = 4.66 95%CI, 1.21-17.8, P = 0.025) and convulsion (OR = 102, 95% CI, 10-996, P = 0.001). Escherichia coli were the common gram negative isolates from urine (72.3%, 95% CI, 66.50-78.10) and blood (40%, 95%CI, and 33.70-46.30). Escherichia coli from urine were 100% resistant to ampicillin, 97% resistant to co-trimoxazole, 85% resistant to augmentin and 32.4% resistant to gentamicin; and they were 100%, 91.2% and 73.5% sensitive to meropenem, ciprofloxacin and ceftriaxone respectively. Urinary tract infection caused by multi drug resistant Escherichia coli was the common cause of febrile illness in our setting. Improvement of malaria diagnosis and its differential diagnosis from other causes of febrile illnesses may provide effective management of febrile illnesses among children in Tanzania

    Successful Induction of Specific Immunological Tolerance by Combined Kidney and Hematopoietic Stem Cell Transplantation in HLA-Identical Siblings

    Full text link
    Induction of immunological tolerance has been the holy grail of transplantation immunology for decades. The only successful approach to achieve it in patients has been a combined kidney and hematopoietic stem cell transplantation from an HLA-matched or -mismatched living donor. Here, we report the first three patients in Europe included in a clinical trial aiming at the induction of tolerance by mixed lymphohematopoietic chimerism after kidney transplantation. Two female and one male patient were transplanted with a kidney and peripherally mobilized hematopoietic stem cells from their HLA-identical sibling donor. The protocol followed previous studies at Stanford University: kidney transplantation was performed on day 0 including induction with anti-thymocyte globulin followed by conditioning with 10x 1.2 Gy total lymphoid irradiation and the transfusion of CD34+ cells together with a body weight-adjusted dose of donor T cells on day 11. Immunosuppression consisted of cyclosporine A and steroids for 10 days, cyclosporine A and mycophenolate mofetil for 1 month, and then cyclosporine A monotherapy with tapering over 9-20 months. The 3 patients have been off immunosuppression for 4 years, 19 months and 8 months, respectively. No rejection or graft-versus-host disease occurred. Hematological donor chimerism was stable in the first, but slowly declining in the other two patients. A molecular microscope analysis in patient 2 revealed the genetic profile of a normal kidney. No relevant infections were observed, and the quality of life in all three patients is excellent. During the SARS-CoV-2 pandemic, all three patients were vaccinated with the mRNA vaccine BNT162b2 (Comirnaty®), and they showed excellent humoral and in 2 out 3 patients also cellular SARS-CoV-2-specific immunity. Thus, combined kidney and hematopoietic stem cell transplantation is a feasible and successful approach to induce specific immunological tolerance in the setting of HLA-matched sibling living kidney donation while maintaining immune responsiveness to an mRNA vaccine (ClinicalTrials.gov: NCT00365846). Keywords: COVID - 19; chimerism; hematopoietic stem cell transplantation (HSCT); immunocompetence; kidney transplantation; toleranc

    Plasmodium knowlesi Genome Sequences from Clinical Isolates Reveal Extensive Genomic Dimorphism.

    Get PDF
    Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and pathobiology

    Evaluation of three PCR-based diagnostic assays for detecting mixed Plasmodium infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the most commonly used molecular test for malaria diagnosis is the polymerase chain reaction (PCR)-based amplification of the 18S ribosomal DNA (rDNA) gene. Published diagnostic assays based on the 18S gene include the "gold standard" nested assay, semi-nested multiplex assay, and one tube multiplex assay. To our knowledge, no one has reported whether the two multiplex methods are better at detecting mixed <it>Plasmodium </it>infections compared to the nested assay using known quantities of DNA in experimentally mixed cocktails.</p> <p>Findings</p> <p>Here we evaluated three PCR assays (nested, semi-nested multiplex, and one-tube multiplex) for the simultaneous detection of human malaria parasites using experimentally mixed cocktails of known quantities of laboratory derived DNA. All three assays detected individual species with high sensitivity and specificity when DNA was from any one single species; however, experimentally mixed DNA cocktails with all four species present were correctly identified most consistently with the nested method. The other two methods failed to consistently identify all four species correctly, especially at lower concentrations of DNA -subclinical levels of malaria (DNA equivalent to or less than 10 parasites per microliter).</p> <p>Conclusions</p> <p>The nested PCR method remains the method of choice for the detection of mixed malaria infections and especially of sub-clinical infections. Further optimization and/or new molecular gene targets may improve the success rate of detecting multiple parasite species simultaneously using traditional PCR assays.</p

    N-3 PUFA Supplementation Triggers PPAR-α Activation and PPAR-α/NF-κB Interaction: Anti-Inflammatory Implications in Liver Ischemia-Reperfusion Injury

    Get PDF
    Dietary supplementation with the n-3 polyunsaturated fatty acids (n-3 PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to rats preconditions the liver against ischemia-reperfusion (IR) injury, with reduction of the enhanced nuclear factor-κB (NF-κB) functionality occurring in the early phase of IR injury, and recovery of IR-induced pro-inflammatory cytokine response. The aim of the present study was to test the hypothesis that liver preconditioning by n-3 PUFA is exerted through peroxisone proliferator-activated receptor α (PPAR-α) activation and interference with NF-κB activation. For this purpose we evaluated the formation of PPAR-α/NF-κBp65 complexes in relation to changes in PPAR-α activation, IκB-α phosphorylation and serum levels and expression of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in a model of hepatic IR-injury (1 h of ischemia and 20 h of reperfusion) or sham laparotomy (controls) in male Sprague Dawley rats. Animals were previously supplemented for 7 days with encapsulated fish oil (General Nutrition Corp., Pittsburg, PA) or isovolumetric amounts of saline (controls). Normalization of IR-altered parameters of liver injury (serum transaminases and liver morphology) was achieved by dietary n-3 PUFA supplementation. EPA and DHA suppression of the early IR-induced NF-κB activation was paralleled by generation of PPAR-α/NF-κBp65 complexes, in concomitance with normalization of the IR-induced IκB-α phosphorylation. PPAR-α activation by n-3 PUFA was evidenced by enhancement in the expression of the PPAR-α-regulated Acyl-CoA oxidase (Acox) and Carnitine-Palmitoyl-CoA transferase I (CPT-I) genes. Consistent with these findings, normalization of IR-induced expression and serum levels of NF-κB-controlled cytokines IL-lβ and TNF-α was observed at 20 h of reperfusion. Taken together, these findings point to an antagonistic effect of PPAR-α on NF-κB-controlled transcription of pro-inflammatory mediators. This effect is associated with the formation of PPAR-α/NF-κBp65 complexes and enhanced cytosolic IκB-α stability, as major preconditioning mechanisms induced by n-3 PUFA supplementation against IR liver injury

    The relationship between reported fever and Plasmodium falciparum infection in African children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fever has traditionally served as the entry point for presumptive treatment of malaria in African children. However, recent changes in the epidemiology of malaria across many places in Africa would suggest that the predictive accuracy of a fever history as a marker of disease has changed prompting calls for the change to diagnosis-based treatment strategies.</p> <p>Methods</p> <p>Using data from six national malaria indicator surveys undertaken between 2007 and 2009, the relationship between childhood (6-59 months) reported fever on the day of survey and the likelihood of coincidental <it>Plasmodium falciparum </it>infection recorded using a rapid diagnostic test was evaluated across a range of endemicities characteristic of Africa today.</p> <p>Results</p> <p>Of 16,903 children surveyed, 3% were febrile and infected, 9% were febrile without infection, 12% were infected but were not febrile and 76% were uninfected and not febrile. Children with fever on the day of the survey had a 1.98 times greater chance of being infected with <it>P. falciparum </it>compared to children without a history of fever on the day of the survey after adjusting for age and location (OR 1.98; 95% CI 1.74-2.34). There was a strong linear relationship between the percentage of febrile children with infection and infection prevalence (R<sup>2 </sup>= 0.9147). The prevalence of infection in reported fevers was consistently greater than would be expected solely by chance and this increased with increasing transmission intensity. The data suggest that in areas where community-based infection prevalence in childhood is above 34-37%, 50% or more of fevers are likely to be associated with infection.</p> <p>Conclusion</p> <p>The potential benefits of diagnosis will depend on the prevalence of infection among children who report fever. The study has demonstrated a predictable relationship between parasite prevalence in the community and risks of infection among febrile children suggesting that current maps of parasite prevalence could be used to guide diagnostic strategies in Africa.</p

    Mixed Th1 and Th2 Mycobacterium tuberculosis-specific CD4 T cell responses in patients with active pulmonary tuberculosis from Tanzania.

    Get PDF
    Mycobacterium tuberculosis (Mtb) and helminth infections elicit antagonistic immune effector functions and are co-endemic in several regions of the world. We therefore hypothesized that helminth infection may influence Mtb-specific T-cell immune responses. We evaluated the cytokine profile of Mtb-specific T cells in 72 individuals with pulmonary TB disease recruited from two Sub-Saharan regions with high and moderate helminth burden i.e. 55 from Tanzania (TZ) and 17 from South Africa (SA), respectively. We showed that Mtb-specific CD4 T-cell functional profile of TB patients from Tanzania are primarily composed of polyfunctional Th1 and Th2 cells, associated with increased expression of Gata-3 and reduced expression of T-bet in memory CD4 T cells. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by single IFN-γ and dual IFN-γ/TNF-α and associated with TB-induced systemic inflammation and elevated serum levels of type I IFNs. Of note, the proportion of patients with Mtb-specific CD8 T cells was significantly reduced in Mtb/helminth co-infected patients from TZ. It is likely that the underlying helminth infection and possibly genetic and other unknown environmental factors may have caused the induction of mixed Th1/Th2 Mtb-specific CD4 T cell responses in patients from TZ. Taken together, these results indicate that the generation of Mtb-specific CD4 and CD8 T cell responses may be substantially influenced by environmental factors in vivo. These observations may have major impact in the identification of immune biomarkers of disease status and correlates of protection
    corecore