151 research outputs found
Modelling root water uptake in a complex land surface scheme coupled to a GCM
International audienceThe aim of this paper is to improve the representation of root water uptake in the land surface scheme SECHIBA coupled to the LMD General Circulation Model (GCM). Root water uptake mainly results from the interaction between soil moisture and root profiles. Firstly, one aspect of the soil hydrology in SECHIBA is changed: it is shown that increasing the soil water storage capacity leads to a reduction in the frequency of soil water drought, but enhances the mean evapotranspiration. Secondly, the representation of the soil-vegetation interaction is improved by allowing a different root profile for each type of vegetation. The interaction between sub-grid scale variabilities in soil moisture and vegetation is also studied. The approach consists of allocating a separate soil water column to each vegetation type, thereby 'tiling' the grid square. However, the possibility of choosing the degree of soil moisture spatial heterogeneity is retained. These enhancements of the land surface system are compared within a number of GCM experiments
Soil Moisture Data Assimilation
Accurate knowledge of soil moisture at the continental scale is important for improving predictions of weather, agricultural productivity and natural hazards, but observations of soil moisture at such scales are limited to indirect measurements, either obtained through satellite remote sensing or from meteorological networks. Land surface models simulate soil moisture processes, using observation-based meteorological forcing data, and auxiliary information about soil, terrain and vegetation characteristics. Enhanced estimates of soil moisture and other land surface variables, along with their uncertainty, can be obtained by assimilating observations of soil moisture into land surface models. These assimilation results are of direct relevance for the initialization of hydro-meteorological ensemble forecasting systems. The success of the assimilation depends on the choice of the assimilation technique, the nature of the model and the assimilated observations, and, most importantly, the characterization of model and observation error. Systematic differences between satellite-based microwave observations or satellite-retrieved soil moisture and their simulated counterparts require special attention. Other challenges include inferring root-zone soil moisture information from observations that pertain to a shallow surface soil layer, propagating information to unobserved areas and downscaling of coarse information to finer-scale soil moisture estimates. This chapter summarizes state-of-the-art solutions to these issues with conceptual data assimilation examples, using techniques ranging from simplified optimal interpolation to spatial ensemble Kalman filtering. In addition, operational soil moisture assimilation systems are discussed that support numerical weather prediction at ECMWF and provide value-added soil moisture products for the NASA Soil Moisture Active Passive mission
L-MEB: A simple model at L-band for the continental areas - Application to the simulation of a half-degree resolution and global scale data set.
L-band (1-2 GHz) microwave radiometry is the most relevant remote sensing technique to monitor soil moisture over land surfaces at the global scale. A synthetic multi-angular brightness temperature data set over land surfaces was simulated at 1.4 GHz, at a half-degree resolution and at the global scale (Pellarin et al., 2003a). This data set was built in order to develop and validate methods to retrieve soil moisture for near-future 1.4 GHz space missions. Brightness temperatures were computed using a simple model (L-MEB, L-band Microwave Emission of the Biosphere) based on radiative transfer equations. The L-MEB model is the result of an extensive review of the current knowledge of the microwave emission of various land covers (herbaceous and woody vegetation, frozen and unfrozen bare soil, snow, etc.) at L-Band considering that the model should be simple enough to be compatible with the simulation of a half-degree resolution and global scale data set. This model was parameterized for simulating L-band observations (in the 1-2 GHz range) but the model equations remain valid in a low frequency range (about 1 to 10 GHz) and thus including the L-, C- and X-bands. The soil and vegetation characteristics needed to initialize the L-MEB model were derived from existing land cover maps. Continuous simulations from a land-surface scheme for 1987 and 1988 provided time series of the main variables driving the L-MEB model: soil temperature at the surface and at depth, surface soil moisture, proportion of frozen surface soil moisture, and snow cover characteristics (depth, density, grain size, liquid water content). The different components of the emission model are described in the following sections. These sections present the general formulation of TB for a composite pixel and the microwave emission modules for soil, vegetation-covered surfaces, open water, snow-covered surfaces and atmospheric effects
Comparison of measured brightness temperatures from SMOS with modelled ones from ORCHIDEE and H-TESSEL over the Iberian Peninsula
L-band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture (SSM) by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm which yields SSM estimates. The work exposed compares brightness temperatures measured by the SMOS mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The two modelled sets were estimated using a radiative transfer model and state variables from two land-surface models: (i) ORCHIDEE and (ii) H-TESSEL. The radiative transfer model used is the CMEM. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations at the moment. Further hypotheses are proposed and will be explored in a forthcoming paper. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies
Recommended from our members
The impact of SMOS soil moisture data assimilation within the Operational Global Flood Awareness System (GloFAS)
In this study the impacts of Soil Moisture and Ocean Salinity (SMOS) soil moisture data assimilation upon the streamflow prediction of the operational Global Flood Awareness System (GloFAS) were investigated. Two GloFAS experiments were performed, one which used hydro-meteorological forcings produced with the assimilation of the SMOS data, the other using forcings which excluded the assimilation of the SMOS data. Both sets of experiment results were verified against streamflow observations in the United States and Australia. Skill scores were computed for each experiment against the observation datasets, the differences in the skill scores were used to identify where GloFAS skill may be affected by the assimilation of SMOS soil moisture data. In addition, a global assessment was made of the impact upon the 5th and 95th GloFAS flow percentiles to see how SMOS data assimilation affected low and high flows respectively. Results against in-situ observations found that GloFAS skill score was only affected by a small amount. At a global scale, the results showed a large impact on high flows in areas such as the Hudson Bay, central United States, the Sahel and Australia. There was no clear spatial trend to these differences as opposing signs occurred within close proximity to each other. Investigating the differences between the simulations at individual gauging stations showed that they often only occurred during a single flood event; for the remainder of the simulation period the experiments were almost identical. This suggests that SMOS data assimilation may affect the generation of surface runoff during high flow events, but may have less impact on baseflow generation during the remainder of the hydrograph. To further understand this, future work could assess the impact of SMOS data assimilation upon specific hydrological components such as surface and subsurface runoff
A Review of the Applications of ASCAT Soil Moisture Products
Remote sensing of soil moisture has reached a level of good maturity and accuracy for which the retrieved products are ready to use in real-world applications. Due to the importance of soil moisture in the partitioning of the water and energy fluxes between the land surface and the atmosphere, a wide range of applications can benefit from the availability of satellite soil moisture products. Specifically, the Advanced SCATterometer (ASCAT) on board the series of Meteorological Operational (Metop) satellites is providing a near real time (and long-term, 9+ years starting from January 2007) soil moisture product, with a nearly daily (sub-daily after the launch of Metop-B) revisit time and a spatial sampling of 12.5 and 25 km. This study first performs a review of the climatic, meteorological, and hydrological studies that use satellite soil moisture products for a better understanding of the water and energy cycle. Specifically, applications that consider satellite soil moisture product for improving their predictions are analyzed and discussed. Moreover, four real examples are shown in which ASCAT soil moisture observations have been successfully applied toward: 1) numerical weather prediction, 2) rainfall estimation, 3) flood forecasting, and 4) drought monitoring and prediction. Finally, the strengths and limitations of ASCAT soil moisture products and the way forward for fully exploiting these data in real-world applications are discussed.228523062
EPS/Metop-SG Scatterometer Mission Science Plan
89 pages, figures, tablesThis Science Plan describes the heritage, background, processing and control of C-band scatterometer data and its remaining exploitation challenges in view of SCA on EPS/MetOp-SGPeer reviewe
Observational needs for improving ocean and coupled reanalysis, S2S prediction, and decadal prediction
Developments in observing system technologies and ocean data assimilation (DA) are symbiotic. New observation types lead to new DA methods and new DA methods, such as coupled DA, can change the value of existing observations or indicate where new observations can have greater utility for monitoring and prediction. Practitioners of DA are encouraged to make better use of observations that are already available, for example, taking advantage of strongly coupled DA so that ocean observations can be used to improve atmospheric analyses and vice versa. Ocean reanalyses are useful for the analysis of climate as well as the initialization of operational long-range prediction models. There are many remaining challenges for ocean reanalyses due to biases and abrupt changes in the ocean-observing system throughout its history, the presence of biases and drifts in models, and the simplifying assumptions made in DA solution methods. From a governance point of view, more support is needed to bring the ocean-observing and DA communities together. For prediction applications, there is wide agreement that protocols are needed for rapid communication of ocean-observing data on numerical weather prediction (NWP) timescales. There is potential for new observation types to enhance the observing system by supporting prediction on multiple timescales, ranging from the typical timescale of NWP, covering hours to weeks, out to multiple decades. Better communication between DA and observation communities is encouraged in order to allow operational prediction centers the ability to provide guidance for the design of a sustained and adaptive observing network
Effects of frozen soil on soil temperature, spring infiltration, and runoff: results from the PILPS 2(d) experiment at Valdai, Russia
Permission to place copies of these works on this server has been provided by the American Meteorological Society (AMS). The AMS does not guarantee that the copies provided here are accurate copies of the published work. © Copyright 2003 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or [email protected] Project for Intercomparison of Land-Surface Parameterization Schemes phase 2(d) experiment at Valdai, Russia, offers a unique opportunity to evaluate land surface schemes, especially snow and frozen soil parameterizations. Here, the ability of the 21 schemes that participated in the experiment to correctly simulate the thermal and hydrological properties of the soil on several different timescales was examined. Using observed vertical profiles of soil temperature and soil moisture, the impact of frozen soil schemes in the land surface models on the soil temperature and soil moisture simulations was evaluated.
It was found that when soil-water freezing is explicitly included in a model, it improves the simulation of soil temperature and its variability at seasonal and interannual scales. Although change of thermal conductivity of the soil also affects soil temperature simulation, this effect is rather weak. The impact of frozen soil on soil moisture is inconclusive in this experiment due to the particular climate at Valdai, where the top 1 m of soil is very close to saturation during winter and the range for soil moisture changes at the time of snowmelt is very limited. The results also imply that inclusion of explicit snow processes in the models would contribute to substantially improved simulations. More sophisticated snow models based on snow physics tend to produce better snow simulations, especially of snow ablation. Hysteresis of snow-cover fraction as a function of snow depth is observed at the catchment but not in any of the models
Effects of Frozen Soil on Soil Temperature, Spring Infiltration, and Runoff: Results from the PILPS 2(d) Experiment at Valdai, Russia
The Project for Intercomparison of Land-Surface Parameterization Schemes phase 2(d) experiment at Valdai, Russia, offers a unique opportunity to evaluate land surface schemes, especially snow and frozen soil parameterizations. Here, the ability of the 21 schemes that participated in the experiment to correctly simulate the thermal and hydrological properties of the soil on several different timescales was examined. Using observed vertical profiles of soil temperature and soil moisture, the impact of frozen soil schemes in the land surface models on the soil temperature and soil moisture simulations was evaluated. It was found that when soil-water freezing is explicitly included in a model, it improves the simulation of soil temperature and its variability at seasonal and interannual scales. Although change of thermal conductivity of the soil also affects soil temperature simulation, this effect is rather weak. The impact of frozen soil on soil moisture is inconclusive in this experiment due to the particular climate at Valdai, where the top 1 m of soil is very close to saturation during winter and the range for soil moisture changes at the time of snowmelt is very limited. The results also imply that inclusion of explicit snow processes in the models would contribute to substantially improved simulations. More sophisticated snow models based on snow physics tend to produce better snow simulations, especially of snow ablation. Hysteresis of snow-cover fraction as a function of snow depth is observed at the catchment but not in any of the models
- …