8,849 research outputs found
Saddles and softness in simple model liquids
We report a numerical study of saddles properties of the potential energy
landscape for soft spheres with different softness, i.e. different power n of
the interparticle repulsive potential. We find that saddle-based quantities
rescale into master curves once energies and temperatures are scaled by
mode-coupling temperature T_MCT, confirming and generalizing previous findings
obtained for Lennard-Jones like models.Comment: 2 pages, 2 figure
A multi-level approach to flood frequency regionalisation
A multi-level approach to flood frequency regionalisation is given. Based on observed flood data, it combines physical and statistical criteria to cluster homogeneous groups in a geographical area. Seasonality analysis helps identify catchments with a common flood generation mechanism. Scale invariance of annual maximum flood, as parameterised by basin area, is used to check the regional homogeneity of flood peaks. Homogeneity tests are used to assess the statistical robustness of the regions. The approach is based on the appropriate use of the index flood method (Dalrymple, 1960) in regions with complex climate and topography controls. An application to north-western Italy is presented.</p> <p style='line-height: 20px;'><b>Keywords:</b> homogeneity, multi-level approach, regionalisation, seasonality, scale invariance, similarity, test
Profiling Web Archive Coverage for Top-Level Domain and Content Language
The Memento aggregator currently polls every known public web archive when
serving a request for an archived web page, even though some web archives focus
on only specific domains and ignore the others. Similar to query routing in
distributed search, we investigate the impact on aggregated Memento TimeMaps
(lists of when and where a web page was archived) by only sending queries to
archives likely to hold the archived page. We profile twelve public web
archives using data from a variety of sources (the web, archives' access logs,
and full-text queries to archives) and discover that only sending queries to
the top three web archives (i.e., a 75% reduction in the number of queries) for
any request produces the full TimeMaps on 84% of the cases.Comment: Appeared in TPDL 201
A multi-level approach to flood frequency regionalisation
International audienceA multi-level approach to flood frequency regionalisation is given. Based on observed flood data, it combines physical and statistical criteria to cluster homogeneous groups in a geographical area. Seasonality analysis helps identify catchments with a common flood generation mechanism. Scale invariance of annual maximum flood, as parameterised by basin area, is used to check the regional homogeneity of flood peaks. Homogeneity tests are used to assess the statistical robustness of the regions. The approach is based on the appropriate use of the index flood method (Dalrymple, 1960) in regions with complex climate and topography controls. An application to north-western Italy is presented. Keywords: homogeneity, multi-level approach, regionalisation, seasonality, scale invariance, similarity, test
Skewness as measure of the invariance of instantaneous renormalized drop diameter distributions – Part 1: Convective vs. stratiform precipitation
Abstract. We investigate the variability of the shape of the renormalized drop diameter instantaneous distribution using of the third order central moment: the skewness. Disdrometer data, collected at Darwin Australia, are considered either as whole or as divided in convective and stratiform precipitation intervals. We show that in all cases the distribution of the skewness is strongly peaked around 0.64. This allows to identify a most common distribution of renormalized drop diameters and two main variations, one with larger and one with smaller skewness. The distributions shapes are independent from the stratiform vs. convective classification
Skewness as measure of the invariance of instantaneous renormalized drop diameter distributions – Part 2: Orographic precipitation
Abstract. Here we use the skewness parameter, and the procedure developed in the companion paper (Ignaccolo and De Michele, 2012), to investigate the variability of instantaneous renormalized spectra of rain drop diameter in presence of orographic precipitation. Disdrometer data, available at Bodega Bay and Cazadero, California, are analyzed either as a whole, or as divided (using the bright band echo) in precipitation intervals weakly and strongly influenced by orography, and compared to results obtained at Darwin, Australia. We find that also at Bodega Bay and Cazadero exists a most common distribution of the skewness values of instantaneous spectra of drop diameter, but peaked at values greater than 0.64, found at Darwin. No appreciable differences are found in the skewness distributions of precipitation weakly and strongly influenced by orography. However the renormalized drop diameter spectra of precipitation with strong orographic component have fatter right tail than precipitation with a weaker orographic component. The differences between orographic and non-orographic precipitation are investigated within the parametric space represented by number of drops, mean value and standard deviation of drop diameter. A filter is developed which is able to identify 1 min time intervals during which precipitation is mostly of orographic origin
Landscapes and Fragilities
The concept of fragility provides a possibility to rank different supercooled
liquids on the basis of the temperature dependence of dynamic and/or
thermodynamic quantities. We recall here the definitions of kinetic and
thermodynamic fragility proposed in the last years and discuss their
interrelations. At the same time we analyze some recently introduced models for
the statistical properties of the potential energy landscape. Building on the
Adam-Gibbs relation, which connects structural relaxation times to
configurational entropy, we analyze the relation between statistical properties
of the landscape and fragility. We call attention to the fact that the
knowledge of number, energy depth and shape of the basins of the potential
energy landscape may not be sufficient for predicting fragility. Finally, we
discuss two different possibilities for generating strong behavior.Comment: 17 pages, 10 figures; accepted version, minor correction
Simulating Hard Rigid Bodies
Several physical systems in condensed matter have been modeled approximating
their constituent particles as hard objects. The hard spheres model has been
indeed one of the cornerstones of the computational and theoretical description
in condensed matter. The next level of description is to consider particles as
rigid objects of generic shape, which would enrich the possible phenomenology
enormously. This kind of modeling will prove to be interesting in all those
situations in which steric effects play a relevant role. These include biology,
soft matter, granular materials and molecular systems. With a view to
developing a general recipe for event-driven Molecular Dynamics simulations of
hard rigid bodies, two algorithms for calculating the distance between two
convex hard rigid bodies and the contact time of two colliding hard rigid
bodies solving a non-linear set of equations will be described. Building on
these two methods, an event-driven molecular dynamics algorithm for simulating
systems of convex hard rigid bodies will be developed and illustrated in
details. In order to optimize the collision detection between very elongated
hard rigid bodies, a novel nearest-neighbor list method based on an oriented
bounding box will be introduced and fully explained. Efficiency and performance
of the new algorithm proposed will be extensively tested for uniaxial hard
ellipsoids and superquadrics. Finally applications in various scientific fields
will be reported and discussed.Comment: 36 pages, 17 figure
- …