24 research outputs found

    Constraining the epoch of reionization with the variance statistic: simulations of the LOFAR case

    Get PDF
    Several experiments are underway to detect the cosmic redshifted 21-cm signal from neutral hydrogen from the Epoch of Reionization (EoR). Due to their very low signal-to-noise ratio, these observations aim for a statistical detection of the signal by measuring its power spectrum. We investigate the extraction of the variance of the signal as a first step towards detecting and constraining the global history of the EoR. Signal variance is the integral of the signal's power spectrum, and it is expected to be measured with a high significance. We demonstrate this through results from a simulation and parameter estimation pipeline developed for the Low Frequency Array (LOFAR)-EoR experiment. We show that LOFAR should be able to detect the EoR in 600 hours of integration using the variance statistic. Additionally, the redshift (zrz_r) and duration (Δz\Delta z) of reionization can be constrained assuming a parametrization. We use an EoR simulation of zr=7.68z_r = 7.68 and Δz=0.43\Delta z = 0.43 to test the pipeline. We are able to detect the simulated signal with a significance of 4 standard deviations and extract the EoR parameters as zr=7.720.18+0.37z_r = 7.72^{+0.37}_{-0.18} and Δz=0.530.23+0.12\Delta z = 0.53^{+0.12}_{-0.23} in 600 hours, assuming that systematic errors can be adequately controlled. We further show that the significance of detection and constraints on EoR parameters can be improved by measuring the cross-variance of the signal by cross-correlating consecutive redshift bins.Comment: 13 pages, 14 figures, Accepted for publication in MNRA

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    METODOLOGÍA PARA LA CONSTRUCCIÓN DE OBJETOS DE APRENDIZAJE PARA EDUCACIÓN A DISTANCIA

    No full text
    Resumen- Este artículo presenta el itinerario utilizado por el equipo de la Univap Virtual para el proyecto, producción y la evaluación del material didáctico destinado a cursos ofrecidos a través de la modalidad a distancia. Este processo es oriundo de la necesidad de construir un material adecuado para la modalidad y destinado a un público alvo específico. La metodología desarrollada está concentrada en cinco fases principales: análise, planificación y desenvolvimiento educativo, pré-producción, producción e integración. El proceso de planificación prevé la creación de objetos de aprendizaje (AO) pretendiendo su futura utilización en ambientes virtuales de aprendizaje (AVA) tomando por base el SCORM. La evaluación del material ocurre durante su desarrollo y en la implementación del curso. Como resultado, se presenta un material didáctico desarrollado con el uso de la tecnología Flash, abordando el tema electricidad por fricción para alumnos de educación primaria y secundaria

    Pathways of human exposure to cobalt in Katanga, a mining area of the D.R. Congo.

    No full text
    Human exposure biomonitoring in the African Copperbelt (Katanga, southern D.R. Congo) revealed elevated cobalt (Co) exposure in the general population. This study was designed to identify the Co exposure routes for the non-occupationally exposed population in that area. The concentration of Co was measured in environmental and urine samples collected in urban and rural communities close to metal mining and/or refining plants, villages near a lake receiving effluents from metal refining plants, and control rural areas without industrial pollution. Drinking water, uncooked food items (maize flour, washed vegetables, fish and meat), indoor and outdoor dust samples were collected at each location. A food questionnaire was used to estimate dietary Co intake for adults and children. Geometric mean urine-Co (U-Co) concentrations were 4.5-fold (adults) and 6.6-fold (children) higher in the polluted than in the control area, with U-Co values being intermediate in the lakeside area. Average Co concentrations in environmental samples differed 6-40-fold between these areas. U-Co was positively correlated with most environmental Co concentrations, the highest correlations being found with Co in drinking water, vegetables and fruit. Estimated average total Co intake for adults was 63 (±42) μg/day in the control area, 94 (±55) μg/day in the lakeside villages and 570 (±100) μg Co/day in the polluted areas. U-Co was significantly related to modelled Co intake (R(2)=0.48, adults and R(2)=0.47, children; log-log relationship). Consumption of legumes, i.e. sweet potato leaves (polluted) and cereals+fish (lakeside) was the largest contributor to Co intake in adults, whereas dust ingestion appeared to contribute substantially in children in the polluted area. In conclusion, dietary Co is the main source of Co exposure in the polluted area and Co is efficiently transferred from soil and water in the human food chain

    Nomograms to predict late urinary toxicity after prostate cancer radiotherapy.

    No full text
    International audienceOBJECTIVE: To analyze late urinary toxicity after prostate cancer radiotherapy (RT): symptom description and identification of patient characteristics or treatment parameters allowing for the generation of nomograms. METHODS: Nine hundred and sixty-five patients underwent RT in seventeen French centers for localized prostate cancer. Median total dose was 70 Gy (range, 65-80 Gy), using different fractionations (2 or 2.5 Gy/day) and techniques. Late urinary toxicity and the corresponding symptoms (urinary frequency, incontinence, dysuria/decreased stream, and hematuria) were prospectively assessed in half of the patients using the LENT-SOMA classification. Univariate and multivariate Cox regression models addressed patient or treatment-related predictors of late urinary toxicity (≥grade 2). Nomograms were built up, and their performance was assessed. RESULTS: The median follow-up was 61 months. The 5-year (≥grade 2) global urinary toxicity, urinary frequency, hematuria, dysuria, and urinary incontinence rates were 15, 10, 5, 3 and 1 %, respectively. The 5-year (≥grade 3) urinary toxicity rate was 3 %. The following parameters significantly increased the 5-year risk of global urinary toxicity (≥grade 2): anticoagulant treatment (RR = 2.35), total dose (RR = 1.09), and age (RR = 1.06). Urinary frequency was increased by the total dose (RR = 1.07) and diabetes (RR = 4). Hematuria was increased by anticoagulant treatment (RR = 2.9). Dysuria was increased by the total dose (RR = 1.1). Corresponding nomograms and their calibration plots were generated. Nomogram performance should be validated with external data. CONCLUSIONS: The first nomograms to predict late urinary toxicity but also specific urinary symptoms after prostate RT were generated, contributing to prostate cancer treatment decision

    The use of bluetooth low energy Beacon systems to estimate indirect personal exposure to household air pollution.

    Get PDF
    Household air pollution (HAP) generated from solid fuel combustion is a major health risk. Direct measurement of exposure to HAP is burdensome and challenging, particularly for children. In a pilot study of the Household Air Pollution Intervention Network (HAPIN) trial in rural Guatemala, we evaluated an indirect exposure assessment method that employs fixed continuous PM2.5 monitors, Bluetooth signal receivers in multiple microenvironments (kitchen, sleeping area and outdoor patio), and a wearable signal emitter to track an individual's time within those microenvironments. Over a four-month period, we measured microenvironmental locations and reconstructed indirect PM2.5 exposures for women and children during two 24-h periods before and two periods after a liquefied petroleum gas (LPG) stove and fuel intervention delivered to 20 households cooking with woodstoves. Women wore personal PM2.5 monitors to compare direct with indirect exposure measurements. Indirect exposure measurements had high correlation with direct measurements (n = 62, Spearman ρ = 0.83, PM2.5 concentration range: 5-528 µg/m3). Indirect exposure had better agreement with direct exposure measurements (bias: -17 µg/m3) than did kitchen area measurements (bias: -89 µg/m3). Our findings demonstrate that indirect exposure reconstruction is a feasible approach to estimate personal exposure when direct assessment is not possible
    corecore