1,052 research outputs found

    satellite data analysis for identification of groundwater salinization effects on coastal forest for monitoring purposes

    Get PDF
    Abstract. In the phreatic aquifer below the San Vitale pinewood (Ravenna, Italy), natural and anthropogenic land subsidence, the low topography and the artificial drainage system have led to widespread saltwater intrusion. Since changes in the groundwater concentration induce variations in the vegetation properties, recognizable by different spectral bands, a comparison between satellite images, ASTER and Worldview-2, was made using the NDVI. The aim was to identify the portions of pinewood affected by salinization through a procedure that could reduce the expensive and time consuming ground monitoring campaigns. Moreover, the Worldview-2 high resolutions were used to investigate the Thermophilic Deciduous Forest (TDF) spectral behaviour without the influence of the allochthonous Pinus pinea species that is scattered throughout the pinewood. The NDVI, calculated with traditional bands, identified the same stressed areas using both satellite data. Instead, the new Red-Edge band of the Worldview-2 image allowed a greater correlation between NDVI and groundwater salinity

    A theoretical-experimental framework for the analysis of the dynamic response of a QEPAS tuning fork device immersed in a fluid medium

    Get PDF
    Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a trace gas sensing technique that employs a designed high-quality factor quartz tuning fork (QTF) as acousto-electric transducer. The first in-plane skew-symmetric flexural mode of the QTF is excited when weak resonant sound waves are generated between the QTF prongs. Thus, the performance of a QEPAS sensor strongly depends on the resonance properties of the QTF, namely the determination of flexural eigenfrequencies and air damping loss. In this work, we present a mixed theoretical-experimental framework to study the dynamic response of a QTF while vibrating in a fluid environment. Due to the system linearity, the dynamic response of the resonator immersed in a fluid medium is obtained by employing a Boundary Element formulation based on an ad hoc calculated Green's function. In particular, the QTF is modelled as constituted by a pair of two Euler-Bernoulli cantilevers partially coupled by a distributed linear spring. As for the forces exerted by the fluid on QTF structure, the fluid inertia and viscosity as well as an additional diffusivity term, whose influence is crucial for the correct evaluation of the system response, have been taken into account. By corroborating the theoretical analysis with the experimental outcomes obtained by means of a vibro-acoustic setup, the fluid response coefficients and the dynamics of the QTF immersed in a fluid environment are fully determined

    Osimertinib in patients with advanced epidermal growth factor receptor T790M mutation-positive non-small cell lung cancer: Rationale, evidence and place in therapy

    Get PDF
    The identification of epidermal growth factor receptor (EGFR) mutations represented a fundamental step forward in the treatment of advanced non-small cell lung cancer (NSCLC) as they define a subset of patients who benefit from the administration of specifically designed targeted therapies. The inhibition of mutant EGFR through EGFR-tyrosine kinase inhibitors (TKIs), either reversible, first-generation gefitinib and erlotinib, or irreversible, second-generation afatinib, has dramatically improved the prognosis of patients harboring this specific genetic alteration, leading to unexpected clinical benefit. Unfortunately, virtually all patients who initially respond to treatment develop acquired resistance to EGFR-TKIs within 9-14 months. The EGFR T790M secondary mutation has emerged as a cause of treatment failure in approximately 60% of resistant cases. To date, several compounds designed with the aim to overcome T790M-mediated resistance are under clinical investigation. The aim of this review is to discuss emerging data regarding the third-generation EGFR-TKI, osimertinib, for the treatment of EGFR T790M mutant advanced NSCLC

    Water Masses Variability in Inner Kongsfjorden (Svalbard) During 2010–2020

    Get PDF
    Kongsfjorden is an Arctic fjord located in the Svalbard archipelago. Its hydrography is influenced by the warm and saline Atlantic Water (AW) in the West Spitsbergen Current and the cold and fresh Polar Water circulating on the shelf. We assess the so-called atlantification of Kongsfjorden in the 2010–2020 decade by inspecting modifications in water properties and water masses variability through moored data and summer CTD surveys. Atlantification in this fjord has emerged as an increasing temperature and salinity, resulting from enhanced advection of Atlantic waters from the West Spitsbergen Current. The water column in inner Kongsfjorden warmed by 0.13°C/yr at 35 m and 0.06°C/yr at 85 m depth from 2010 to 2020, while salinity increased by 0.3 PSU. Depth-averaged temperatures have increased by 0.26°C/yr in the warmest months of the year, whereas they appear relatively stable in the coldest months. Both temperature and salinity present a linear regression change point in January 2017, with latter years featuring decreasing values. Highly diluted AW is found at the beginning of the decade, which give way to more and more pure AW in latter years, culminating in extensive intrusions in 2016 and 2017 determining the warmest and saltiest conditions over the decade in inner Kongsfjorden. Observations in the 2010–2020 decade confirm that Kongsfjorden has transitioned to an Atlantic-type fjord, featuring depleted sea ice conditions and rather regular shallow intrusions of AW in summer and frequently also in winter. Although single intrusions of AW are associated with dynamical events on the shelf, we found that the long-term temperature evolution in the inner Kongsfjord is consistent with the meridional temperature transport of the West Spitsbergen Current. The AW current flowing northward from lower latitudes along the western Svalbard archipelago thus has profoundly driven local conditions in the inner fjord in this decade

    An overview on molecular characterization of thymic tumors: Old and new targets for clinical advances

    Get PDF
    Thymic tumors are a group of rare mediastinal malignancies that include three different histological subtypes with completely different clinical behavior: the thymic carcinomas, the thymomas, and the rarest thymic neuroendocrine tumors. Nowadays, few therapeutic options are available for relapsed and refractory thymic tumors after a first-line platinum-based chemotherapy. In the last years, the deepening of knowledge on thymus’ biological characterization has opened possibilities for new treatment options. Several clinical trials have been conducted, the majority with disappointing results mainly due to inaccurate patient selection, but recently some encouraging results have been presented. In this review, we summarize the molecular alterations observed in thymic tumors, underlying the great biological differences among the different histology, and the promising targeted therapies for the future

    Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003-2006

    Get PDF
    Formaldehyde columns retrieved from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography/Chemistry (SCIAMACHY) instrument onboard ENVISAT satellite through 2003 to 2006 are used as top-down constraints to derive updated global biogenic and biomass burning flux estimates for the non-methane volatile organic compounds (NMVOCs) precursors of formaldehyde. Our interest is centered over regions experiencing strong emissions, and hence exhibiting a high signal-to-noise ratio and lower measurement uncertainties. The formaldehyde dataset used in this study has been recently made available to the community and complements the long record of formaldehyde measurements from the Global Ozone Monitoring Experiment (GOME). We use the IMAGESv2 global chemistry-transport model driven by the Global Fire Emissions Database (GFED) version 1 or 2 for biomass burning, and from the newly developed MEGAN-ECMWF isoprene emission database. The adjoint of the model is implemented in a grid-based framework within which emission fluxes are derived at the model resolution, together with a differentiation of the sources in a grid cell. Two inversion studies are conducted using either the GFEDv1 or GFEDv2 as a priori for the pyrogenic fluxes. Although on the global scale the inferred emissions from the two categories exhibit only weak deviations from the corresponding a priori estimates, the regional updates often present large departures from their a priori values. The posterior isoprene emissions over North America, amounting to about 34 Tg C/yr, are estimated to be on average by 25% lower than the a priori over 2003–2006, whereas a strong increase (55%) is deduced over the south African continent, the optimized emission being estimated at 57 Tg C/yr. Over Indonesia the biogenic emissions appear to be overestimated by 20–30%, whereas over Indochina and the Amazon basin during the wet season the a priori inventory captures both the seasonality and the magnitude of the observed columns. Although neither biomass burning inventory seems to be consistent with the data over all regions, pyrogenic estimates inferred from the two inversions are reasonably similar, despite their a priori deviations. A number of sensitivity experiments are conducted in order to assess the impact of uncertainties related to the inversion setup and the chemical mechanism. Whereas changes in the background error covariance matrix have only a limited impact on the posterior fluxes, the use of an alternative isoprene mechanism characterized by lower HCHO yields (the GEOS-Chem mechanism) increases the posterior isoprene source estimate by 11% over northern America, and by up to 40% in tropical regions

    Multiple sclerosis treatment and melanoma development

    Get PDF
    Therapy of multiple sclerosis (MS) with disease-modifying agents such as natalizumab or fingolimod has been associated with the development of cutaneous melanoma. Here we briefly revise literature data and report of a case of a 48-year old woman who developed a melanoma and several atypical naevi after sub sequential treatment with natalizumab (1 year) and fingolimod (7 years). By immunohistochemistry we observed the presence of T cells and leukocyte infiltration as well as of vascular endothelial growth factor (VEGF)-A expression in the patient melanoma biopsy. Then, we analyzed proliferation, migration and VEGF-A expression in three melanoma cell lines and found out that both natalizumab and fingolimod inhibited tumor cell proliferation but promoted or blocked cell migration depending on the cell line examined. VEGF-A secretion was augmented in one melanoma cell line only after fingolimod treatment. In conclusion, our in vitro data do not support the hypothesis of a direct action of natalizumab or fingolimod on melanoma progression but acting on the tumor microenvironment these treatments could indirectly favor melanoma evolution

    Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns

    Get PDF
    A new one-decade (1997–2006) dataset of formaldehyde (HCHO) columns retrieved from GOME and SCIAMACHY is compared with HCHO columns simulated by an updated version of the IMAGES global chemical transport model. This model version includes an optimized chemical scheme with respect to HCHO production, where the short-term and final HCHO yields from pyrogenically emitted non-methane volatile organic compounds (NMVOCs) are estimated from the Master Chemical Mechanism (MCM) and an explicit speciation profile of pyrogenic emissions. The model is driven by the Global Fire Emissions Database (GFED) version 1 or 2 for biomass burning, whereas biogenic emissions are provided either by the Global Emissions Inventory Activity (GEIA), or by a newly developed inventory based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN) algorithms driven by meteorological fields from the European Centre for Medium-Range Weather Forecasts (ECMWF). The comparisons focus on tropical ecosystems, North America and China, which experience strong biogenic and biomass burning NMVOC emissions reflected in the enhanced measured HCHO columns. These comparisons aim at testing the ability of the model to reproduce the observed features of the HCHO distribution on the global scale and at providing a first assessment of the performance of the current emission inventories. The high correlation coefficients (<i>r</i>>0.7) between the observed and simulated columns over most regions indicate a good consistency between the model, the implemented inventories and the HCHO dataset. The use of the MEGAN-ECMWF inventory improves the model/data agreement in almost all regions, but biases persist over parts of Africa and Australia. Although neither GFED version is consistent with the data over all regions, a better agreement is achieved over Indonesia and Southern Africa when GFEDv2 is used, but GFEDv1 succeeds better in getting the correct seasonal patterns and intensities of the fire episodes over the Amazon basin, as reflected in the significantly higher correlations calculated in this region. Although the uncertainties in the HCHO retrievals, especially over fire scenes, can be quite large, this study provides a first assessment about whether the improved methodologies and input data implemented in GFEDv2 and MEGAN-ECMWF lead to better results in the comparisons of modelled with observed HCHO column measurements

    Innovative eco-friendly hydrogel film for berberine delivery in skin applications†

    Get PDF
    Hydrogel formulations (masks or patches, without tissue support) represent the new frontier for customizable skin beauty and health. The employment of these materials is becoming popular in wound dressing, to speed up the healing process while protecting the affected area, as well as to provide a moisturizing reservoir, control the inflammatory process and the onset of bacterial development. Most of these hydrogels are acrylic-based at present, not biodegradable and potentially toxic, due to acrylic monomers residues. In this work, we selected a new class of cellulose-derived and biodegradable hydrogel films to incorporate and convey an active compound for dermatological issues. Films were obtained from a combination of different polysaccharides and clays, and berberine hydrochloride, a polyphenolic molecule showing anti-inflammatory, immunomodulatory, antibacterial and antioxidant properties, was chosen and then embedded in the hydrogel films. These innovative hydrogel-based systems were characterized in terms of water uptake profile, in vitro cytocompatibility and skin permeation kinetics by Franz diffusion cell. Berberine permeation fitted well to Korsmeyer–Peppas kinetic model and achieved a release higher than 100 µg/cm2 within 24 h. The latter study, exploiting a reliable skin model membrane, together with the biological assessment, gained insights into the most promising formulation for future investigations

    Operationalising cognitive fatigability in multiple sclerosis: a Gordian knot that can be cut?

    Get PDF
    Background: Researchers have attempted to operationalise objective measures of cognitive fatigability in multiple sclerosis (MS) to overcome the perceived subjectivity of patient-reported outcomes of fatigue (PROs). Measures of cognitive fatigability examine decrements in performance during sustained neurocognitive tasks. Objective: This personal viewpoint briefly summarises available evidence for measures of cognitive fatigability in MS and considers their overall utility. Results: Studies suggest there may be a construct that is distinct from self-reported fatigue, reflecting a new potential intervention target. However, assessments vary and findings across and within measures are inconsistent. Few measures have been guided by a coherent theory, and those identified are likely to be influenced by other confounds, such as cognitive impairment caused more directly by disease processes, depression and assessment biases. Conclusion: Future research may benefit from (a) developing a guiding theory of cognitive fatigability, (b) examining ecological and construct validity of existing assessments and (c) exploring whether the more promising cognitive fatigability measures are correlated with impaired functioning after accounting for possible confounds. Given the issues raised, we caution that our purposes as researchers may be better served by continuing our search for a more objective cognitive fatigability construct that runs in parallel with improving, rather than devaluing, current PROs
    • …
    corecore