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Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a trace gas sensing technique that
employs a designed high-quality factor quartz tuning fork (QTF) as acousto-electric trans-
ducer. The first in-plane skew-symmetric flexural mode of the QTF is excited when weak
resonant sound waves are generated between the QTF prongs. Thus, the performance of
a QEPAS sensor strongly depends on the resonance properties of the QTF, namely the deter-
mination of flexural eigenfrequencies and air damping loss.
In this work, we present a mixed theoretical-experimental framework to study the

dynamic response of a QTF while vibrating in a fluid environment. Due to the system lin-
earity, the dynamic response of the resonator immersed in a fluid medium is obtained by
employing a Boundary Element formulation based on an ad hoc calculated Green’s func-
tion. In particular, the QTF is modelled as constituted by a pair of two Euler-Bernoulli can-
tilevers partially coupled by a distributed linear spring. As for the forces exerted by the
fluid on QTF structure, the fluid inertia and viscosity as well as an additional diffusivity
term, whose influence is crucial for the correct evaluation of the system response, have
been taken into account.
By corroborating the theoretical analysis with the experimental outcomes obtained by

means of a vibro-acoustic setup, the fluid response coefficients and the dynamics of the
QTF immersed in a fluid environment are fully determined.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The sensitive and selective detection of trace gas concentrations has found widespread applications [1], and includes sev-
eral fields, such as environmental monitoring [2], industrial process control [3], rural and urban emission studies [4], chem-
ical analysis and control of manufacturing processes [5]. Numerous analytical instruments based on optical and non-optical
techniques have been developed with the aim to offer high sensitivity and selectivity, multicomponent detection capability,
room temperature operation, fast response time, large dynamic range, and ease of use [6].
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Optical techniques based on tunable laser absorption spectroscopy (TDLAS) for trace gas sensing are not far from being
able to meet these requirements. Among them, photoacoustic spectroscopy (PAS) has established as a very attractive tech-
nique for sensitive trace gas detection [6]. It is based on the photoacoustic effect [7,8], i.e. on the generation of sound waves
as a consequence of the absorption of modulated light by a target gas. PAS uses resonant cells to enhance the acoustic wave
and sensitive microphones to detect and transduce it into an electric signal [9,10]. Thus, PAS does not require an optical
detector and the detection scheme is wavelength-insensitive.

Since 2002 [11,12], Quartz-Enhanced PAS (QEPAS) has been proposed as a variant of traditional PAS: the acoustic cells are,
in this case, replaced by small quartz tuning forks (QTFs), acting as sharply resonant acoustic transducers to detect weak
photoacoustic excitation. The employment of a QTF allowed size reduction of the acoustic detection unit as well as high
immunity, during operation, to environmental noise caused by external excitation sources, owing to the reduction of the
detection bandwidth due to the high quality factor of the QTF resonance. Therefore, QEPAS technology is competitive with
and, in many cases, preferred to other trace gas sensing methods [13–17].

Looking at its mechanical structure, a QTF can be considered as two cantilevers (prongs) joined at a common base. The in-
plane flexural modes of vibrations of the QTFs can be classified into two groups: symmetrical modes, where the prongs
moves along the same direction, and anti-symmetrical modes, where the two prongs oscillate along opposite directions
[18,19]. The in-plane anti-symmetrical modes are the predominant ones when a sound source is positioned between the
prongs, forcing them to move in the opposite directions. In QEPAS sensors, as shown in the schematic in Fig. 1, the light
source is focused between the QTF prongs and the sound waves produced by the modulated absorption of the gas are gen-
erated between the QTF prongs, forcing them to vibrate anti-symmetrically back and forward. A schematic of the core of a
QEPAS sensor is sketched in Figure 1. Thus, in-plane anti-symmetrical modes of the QTF are excited. When these oscillations
occur at one of the resonance frequencies of the QTF, the induced strain field generates surface electric charges due to the
quartz piezoelectricity and the total charge is proportional to the intensity of the sound waves incident on the QTF prongs.
The generated charges are collected using a transimpedance amplifier and the measured electrical signal is proportional to
the concentration of absorbing gas species.

As a consequence, the performance of a QEPAS sensor is strongly determined by the resonance properties of the QTF,
which is fully immersed in the gas sample. Thus, it is crucial to study the response of the QTF in a fluid medium while it
is vibrating, at the in-plane anti-symmetrical flexural mode. Several theoretical models describing the main loss mecha-
nisms, namely the air damping [26–28], support losses [27,29–31] and thermoelastic damping [32] have been proposed
for a single cantilever oscillating in fluid medium or in vacuum. These models have been applied to a QTF to predict depen-
dence of the quality factor on the QTF prong geometry, for both the fundamental and first overtone flexural mode [33,34].
While the trends are well predicted, QTF overall quality factor values are poorly estimated. Besides, when assuming fixed the
base plate and neglecting the coupling between the two prongs, an excellent estimation of the in-plane flexural eigenfre-
quencies can be obtained only as long as the QTF prongs are slender beams [22]. Conversely, for QTF geometry with squat
prongs, neglecting the vibration of the base plate and its coupling effect can lead to incorrect estimation of the eigenfrequen-
cies. For this reason, the effect of the base plate, as vibrating and structural coupling element, has to be considered [20].

In this work, we propose a theoretical-experimental model to determine the response of the QTF vibrating in a fluid med-
ium in a relatively simple and phenomenological way. As a consequence, this approach will provide more control on the gov-
erning parameters of the physical phenomenon: these will be easily recognized, controlled, and optimized, and without
using computational-demanding fluid-structure interaction numerical simulations [48]. Specifically, the proposed model
employs a combined analytical-experimental methodology to analyze the dynamic response of a quartz tuning fork when
forced to vibrate to the fundamental anti-symmetrical flexural mode, by accounting for the effects due to the interaction
with the surrounding fluid. Due to its linearity, the system response is calculated by using an ad hoc Green’s function.
The system domain includes two Euler-Bernoulli beams partially coupled by a distributed linear spring [35], used to model
the plate connecting the two prongs as well as the underlying part. The drag force exerted by the fluid on the QTF is modelled
Fig. 1. QEPAS principle of operation. A QTF is immersed in a fluid and laser light is focused between two QTF prongs. Weak sound waves generated by
photoacoustic effect deflect the prong in two opposite directions.
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by a simple integral expression which accounts not only for fluid inertia and viscosity but also for a diffusivity vorticity term
[42–44], whose influence is fundamental for the correct evaluation of the system response [47].

As usually done for many applications in solid mechanics [50–53], in the framework of the Boundary Element Method-
ology (BEM) [49], the problem is reduced to the solution of an integral equation between forces and displacements.

Once the theoretical expression of the system response is determined, an experimental test on a specific QTF vibrating in
air was performed to fine tune the theoretical response. An acoustic stationary random field generated by two speakers has
been used to excite the QTF and the resulting forced vibration time series has been measured and recorded by using a LD
vibrometer, while an electronic microphone has been employed to measure the acoustic pressure in a specific point close
to the QTF.

The paper is organized as follows: in Section 2, the mathematical model is presented, with a description of the QTF
dynamics and its interaction with the surrounding fluid with an analysis on the stochastic excitation source used in the
experiments; in Section 3, the experimental setup is described; in Section 4, the theoretical model is fitted on the experimen-
tal data and the effect of the diffusivity fluid term as well as the structural coupling term are discussed; in Section 5, final
remarks are provided. In Appendix A, the calculation of the Green’s function of the QTF is reported and the relative boundary
conditions are provided; finally, Appendix B includes fluid dynamics Finite Element calculations to estimate the hydrody-
namic function’s coefficients.

2. Mathematical model formulation

2.1. Dynamics equations

In this section, the mathematical model describing the in-plane flexural vibration of a quartz tuning fork (QTF) device
immersed in a viscous fluid is presented. The structure is split into four parts, each modelled as a one-dimensional (1D), lin-
ear Euler-Bernoulli beam with a rectangular cross section of thickness h. The underlying two beams are considered coupled
by a set of distributed linear springs with constant stiffness per unit length k, as represented in Figure 2. Specifically, the two
interconnected beams, labelled as BL (bottom-left) and BR (bottom-right), having width B=2 and length Lb, model the base
plate of the QTF; the beams labelled as TL (top-left) and TR (top-right), with width band length Lp, model the two prongs of
the tuning fork. Beams BL and TL and beams BR and TR are, respectively, segments of two cantilevers with length L ¼ Lb þ Lp,
each having a step discontinuity on the cross section. Their dynamics is governed by the following motion equation
Fig. 2. Reduction of the 3D QTF to a 1D Euler-Bernoulli model.
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EJ xð Þ @
4ui x; tð Þ
@x4

þ qA xð Þ @
2ui x; tð Þ
@t2

þ k xð Þ ui x; tð Þ � uj x; tð Þ� � ¼ f i x; tð Þ ð1Þ
where t is the time variable, x is the common coordinate along the beam axes, with y and z the coordinates along the width
and thickness directions, respectively. Furthermore, ui x; tð Þ and uj x; tð Þ indicate the in-plane elastic deflection of the i-th and
j-th cantilever, respectively, with i; j ¼ 1;2 and i– j;q and E are the mass per unit volume and the Young’s modulus of the
material of the beams, respectively. Finally, we have A xð Þ ¼ Ab �H x� Lbð Þ Ab � Ap

� �
, with H xð Þ the Heaviside unit step func-

tion, Ab ¼ hB=2 and Ap ¼ hb the cross-section areas of the bottom and top segments, respectively,

J xð Þ ¼ Jb �H x� Lbð Þ Jb � Jp
� �

, with Jb ¼ h B=2ð Þ3=12 and Jp ¼ hb3
=12 the corresponding inertia moments; the coupling stiffness

k xð Þ is equal to k 1�H x� Lbð Þð Þ. The forcing term f i x; tð Þ is equal to f exti x; tð Þ þ f Fi x; tð Þ, where f exti x; tð Þ is the overall external

force per unit length acting on the i-th beam, not including the contribution f Fi x; tð Þ, exerted by the encompassing fluid, that
we assume to be Newtonian and incompressible.

The boundary conditions to be taken into account for each cantilever are the well-known fixed-free boundary conditions,
that is ui 0; tð Þ ¼ 0; @ui 0; tð Þ=@x ¼ 0; @2ui L; tð Þ=@x2 ¼ 0; @3ui L; tð Þ=@x3 ¼ 0.

2.2. Fluid-Structure Interaction

Assuming small in-plane deflections, the fluid response can be considered linear and the force f Fi x; tð Þ can be evaluated by
means of the following Green’s function approach [47]
f Fi x; tð Þ ¼
Z t

�1

Z L

0
dsdx0GF x; x0; t � sð Þ @u

2
i x0; sð Þ
@s2

ð2Þ
where the form of GF x; x0; tð Þ is heuristically derived. Specifically, by assuming L � b and b � h, we are allowed to neglect the
three-dimensional (3D) phenomena related to variations of the flow physics along the beams’ axes, as we assimilate the
beams’ cross-sections to rigid slender bodies. Thus, the hydrodynamic loading per unit length can be estimated by studying
the two-dimensional (2D) flow induced by the small amplitude oscillations of those bodies in the transversal direction
[38,36,37,39–41]. Thus, the fluid response can be modelled as GF x; x0; tð Þ ¼ GF x; tð Þd x� x0ð Þ, rephrasing accordingly Equation
(2) as
f Fi x; tð Þ ¼
Z t

�1
dsGF x; t � sð Þ @u

2
i x; sð Þ
@s2

ð3Þ
In this way, it is possible to study the unsteady Stokes’ flow generated by the linear oscillation of an isolated slender body,
governed by the following equations
@W
@t

¼ mr2W ð4Þ

r � v ¼ 0 ð5Þ

wherer andr2 are the Nabla and Laplace operators. Equation (4) represents the linearized momentum equation, expressed
in form of vorticity W ¼ r� v [44], while Equation (5) is the continuity equation, with v and m the velocity and the kine-
matic viscosity of the fluid, respectively.

As the vorticity is governed by a diffusive-like equation, it generates a solution in terms of velocity that exponentially
decays from the boundary of the body toward the interior fluid. The amplitude of this exponential decays allows the esti-
mation of the thickness hf of the fluid layer, where the fluid behaves as rotational and the diffusion of the tangential velocity

is important. Let us notice that hf �
ffiffiffiffiffiffiffiffiffiffi
m=x

p
, wherex is the characteristic radian frequency of the motion. Outside of the layer,

the term mr2W can be neglected and a potential flow is established.
Since hf is frequency-dependent, it is very small in the high frequency range, with the fluid response solely governed by

inertial effects and, thus, proportional to the acceleration of the moving body. In this case, the Green’s function of the fluid
has to be proportional to the Dirac Delta function d tð Þ by means of a certain inertia coefficient l xð Þ. Conversely, at low fre-
quencies, the Eulerian rate of change @W=@t can be neglected and hf becomes larger than the characteristic dimensions of the
moving body. In this case, the fluid response is expected to be linearly proportional to the body velocity, implying a form of
the fluid Green’s function proportional to a specific damping coefficient c xð Þ. In the mid frequency range, the effects of vor-
ticity diffusion are predominant [44]. Thus, in this latter case, the fluid Green’s function has to come inversely proportional toffiffi
t

p
, by a particular diffusive coefficient a xð Þ.
In conclusion, due to the linearity of the sought fluid response, the overall force exerted by the fluid on the oscillating

body has to be the sum of those three contributions
GF x; tð Þ ¼ �c xð Þ � a xð Þffiffi
t

p � l xð Þd tð Þ t P 0

GF x; tð Þ ¼ 0 t < 0
ð6Þ
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Equation (6), which satisfies the causality principle, clearly is an heuristic approximation of the fluid response. Further-
more, the dependence of the three fluid coefficients on the spatial abscissa x is negligible in the case of an isolated cantilever
vibrating in an unbounded fluid [47], as in the case considered in the present study. To estimate the numerical values
assumed by the three coefficients in our application, the best fit of the experimental response has to be performed.

By substituting Equation (6) in Equation (3), the following expression of the exerted fluid force is obtained
f Fi x; tð Þ ¼ �c
@ui x; tð Þ

@t
� a

Z t

�1
ds

1ffiffiffiffiffiffiffiffiffiffiffi
t � s

p @u2
i x; sð Þ
@s2 � l

@u2
i x; tð Þ
@t2

ð7Þ
Equation (7) can be transformed from time to Laplace domain with s ¼ ix, where s the Laplace variable,
i ¼

ffiffiffiffiffiffiffi
�1

p
; x ¼ 2p f with f the time frequency, and, so that, ûi x; sð Þ ¼ Rþ1

0 dtui x; tð Þe�st . Ultimately, it is possible to define
f̂ Fi x;xð Þ ¼ x2C xð Þûi x;xð Þ ð8Þ
where
C xð Þ ¼ lþ a
ffiffiffiffi
p
2

r
x�1=2 � i cx�1 þ a

ffiffiffiffi
p
2

r
x�1=2

� �
ð9Þ
is the so-called hydrodynamic function [38–41], whose real part describes the fluid added mass, while the imaginary part
accounts for the hydrodynamic damping.

The diffusive-velocity contribution, proportional to the a coefficient, gives rise to two identical terms appearing symmet-
rically in the real and imaginary parts of C xð Þ, implying that this contribution equally influences both the added mass and
the hydrodynamic damping, and, in turn, both the eigenfrequencies and the quality factors associated to system eigenmodes.
The overall mass adding effect can be neglected, as also reported in literature (see Refs. [1–33]), in the case of QEPAS appli-
cations, and in Refs. [45,46], in the case of the laterally vibrating microcantilevers; while a correct estimation of the hydro-
dynamic damping is crucial, since the QTF quality factor plays a fundamental role in design and operation of those
resonators. Indeed, at atmospheric pressure the fluid damping is the dominant energy dissipation mechanism [22]–
[33,34] and any form of inner structural dissipation can be neglected.

Let us now focus more in detail on the key feature marking the hydrodynamic function C xð Þ, that is, the presence of the
diffusive velocity term in the description of the fluid force exerted on the structure. Specifically, by accounting for this term,
it is possible to consider the effects of the tangential velocity diffusion, going from the fluid layer, adhering to the skin of each
beam, towards the interior part of the fluid region. From a physical point of view, this has a crucial importance as it can be
understood by focusing on a very simple model. Indeed, let us consider the case of a Newtonian, incompressible and viscous
fluid bounded by an infinite plane surface, which executes small oscillation in its own plane. In particular, the solid surface is
placed in the xy-plane, the fluid region coincides with the half-space for z > 0 , the direction of the surface oscillation is taken
in the y-axis and the time law of the surface motion is given by u tð Þ ¼ u0e�ixt . In this specific case, the motion of the fluid is
governed by a purely 1D diffusive equation [44]
q
@vy

@t
¼ g

@2vy

@y2
ð10Þ
where vy is the fluid velocity in the y-direction. Such an infinite planar surface oscillating in a viscous fluid, fits perfectly the
conditions of the device under study in this paper, i.e. the QTF#S15, whose dimensions are listed in Table 1. Indeed, each
single prong can be approximated to a flat plate moving in a viscous fluid. Furthermore, with the regards to the role of dif-
fusion in Eq. (9), it is well known in literature that, apart from the added mass constant, terms depending on x�1=2 of both
real and imaginary part of C xð Þ are arguably, in the frequency range of interest, the leading ones in a series expansion of the
hydrodynamic function. This has been demonstrated, for example, in Ref. [38] for the out-of-plane motion in fluid of a single
microcantilever and in Ref. [45,46] for its in-plane motion; a similar scaling effect has to be considered in the case of the
hydrodynamic coupling of two microcantilevers, as shown in Ref [39].
Table 1
Dimensions of the QTF#S15 device used in this work, the nomenclature refers to Fig. 2.

QTF#S15 Dimensions [mm]

Prong Length Lp ¼ 9:4
Base Length Lb ¼ 3:6
Prong Width b ¼ 2
Base Width B ¼ 6
Prong Spacing d ¼ 1:5
QTF Thickness h ¼ 0:25
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Ultimately, these considerations suggest that it is possible to neglect the contribution of the viscous term c and obtain a
simplified expression of the hydrodynamic function, as
C xð Þ ¼ lþ 1� ið Þa
ffiffiffiffi
p
2

r
x�1=2 ð11Þ
A more detailed analysis on the estimation of the hydrodynamic function’s coefficients, on the dominance of the diffusive
term, and on the negligible effect of mass adding can be found in Appendix B, where these considerations are corroborated
by a CFD analysis. Specifically, we there show that cx�1 � a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=2x

p
and that the whole real part of C xð Þ can be neglected

when compared to the cantilevers’ mass per unit length, that is lþ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=2x

p � qA xð Þ.

2.3. Dynamics equations in the frequency domain

By rephrasing the motion equations of the two cantilevers (1) in the frequency domain, accounting for Equation (8) and
adopting a suitable matrix notation, the following compact description of the QTF dynamics can be obtained
@4�u x;xð Þ
@x4

þ �B x;xð Þ�u x;xð Þ ¼ �f ext x;xð Þ ð12Þ
where u
�

x;xð Þ ¼ û1 x;xð Þ; û2 x;xð Þf gT; f
�
ext x;xð Þ ¼ 1=EJ xð Þð Þ f̂ ext1 x;xð Þ; f̂ ext2 x;xð Þ

n oT
, in which T denotes matrix transposition,

and
�B x;xð Þ ¼
B x;xð Þ � k xð Þ

EJ xð Þ

� k xð Þ
EJ xð Þ B x;xð Þ

24 35

with B x;xð Þ ¼ 1=EJ xð Þð Þ �x2 qA xð Þ þ C xð Þð Þ þ k xð Þ� � � 1=EJ xð Þð Þ �x2 qA xð Þ � ia

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=2x

p� �
þ k xð Þ

� �
, since, as anticipated,

cx�1 � a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=2x

p
and lþ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=2x

p � qA xð Þ.
The fluid coupling between the prongs is neglected in the QTF dynamics modelled by the set of Equations (12). In fact, on

the one hand, being the QEPAS technique a gas sensing application, the densities of operated fluids are at least 3 order of
magnitude lower than the density of the QTF material, i.e. quartz. On the other hand, the prongs’ spacing is comparable
to the prongs’ width and it is several times larger than the prongs’ thickness. With QTF#S15, investigate in this work, the
spacing-to-width ratio is equal to 0.75, while the spacing-to-thickness ratio is equal to 6 (see Table 1).

2.4. Computation of the linear response

By relying on the linearity of system’s Equations (12), a Green’s function approach has been adopted to determine the
specific solution of the problem. Hence, the system’s complex Green’s function is calculated, even referred to the suscepti-
bility function, which is the solution of the so-called fundamental problem [47]. Specifically, a concentrated force of unit
impulse is supposed to be applied to a generic cross-section n of the resonator (Figure 3), that is, to a certain section n of
the j-th cantilever, when the other remains unloaded. The output of the i-th cantilever when the system is subjected to such
a loading condition of this kind [21] is denoted with Gij x; n;xð Þ, as depicted in Figure 3. Details on the computation are
reported in Appendix A.

Then, the in-plane elastic deflection of each cantilever, caused by a generic load �f x;xð Þ acting on the system, is calculated
by means of the following integral equation
ûi x;xð Þ ¼
Z L

0
dnGii x; n;xð Þf̂ i n;xð Þ þ

Z L

0
dnGij x; n;xð Þf̂ j n;xð Þ ð13Þ
where i; j ¼ 1;2 and i– j.
We observe that the susceptibility function Gij x; n;xð Þ is function of the fluid coefficient a as well as of the coupling stiff-

ness k, whose numerical values can be found by tuning the model with experimental outcomes. The experimental response
will be fitted in correspondence to the first skew-symmetric in-plane flexural mode, which is the piezoelectrically active
mode of QTFs typically employed in QEPAS applications. For QTF#S15, it falls at 15.808kHz. In Figure 4, the magnitude
and the phase angle of the susceptibility functions of both cantilevers are reported, evaluated at their tips x ¼ L, while
the concentrated force is applied to the half-length of the base n ¼ Lb=2 of the left cantilever. We notice that the two prongs
vibrate out of phase, as expected in the case of the first skew-symmetric in-plane flexural mode.

In order to calculate the susceptibility functions Gij x; n;xð Þ accounting for the system boundary conditions, the solution of
the fundamental problem is obtained in a discrete form (details are reported in Appendix A).

Then, these susceptibility functions are stored in a matrix form by adopting the following numerical procedure: (i) dis-
cretize the interesting range of frequenciesxk with Nk points and the spatial abscissas xr and ns with N points along the total
cantilever length L, thus defining the spatial discretizations as Dx ¼ Dn ¼ L= N � 1ð Þ, (ii) apply, for fixed value ofxk, a concen-
6
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Fig. 4. Magnitudes and phase angles of susceptibility functions G11 L; Lb=2;xð Þ (blue curve) and G21 L; Lb=2;xð Þ (red curve) of the two cantilevers of QTF#S15,
computed by employing as coefficients a ¼ 2:341� 10�5Pas3=2 and k ¼ 1:7865� 109Pa. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 3. Susceptibility function adopted notation. The susceptibility function comprises G11 x; n;xð Þ and G21 x; n;xð Þ in the case the unit impulse concentrated
force is applied to a generic section n of the left cantilever while the right one remains unloaded (left panel); G12 x; n;xð Þ and G22 x; n;xð Þ in the case the load
is exerted on a section n of the right cantilever with the left unforced (right panel).
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trated load at a generic section ns of a single cantilever and compute the quantities Gij xr; ns;xkð Þ for i; j ¼ 1;2, by solving the
fundamental problem, (iii) repeat the previous step for all the xk values included in the chosen frequency range.

By following this procedure, the matrices G½ �ij for both cantilevers are obtained
G½ �ij ¼ Gij xr; ns;xkð Þ	 
 ð14Þ

with i; j ¼ 1;2; r ¼ 1; . . . ;N; s ¼ 1; . . . ;N; and k ¼ 1; . . . ;Nk. It is worth noting that, for a fixed frequency, a column of the G½ �ij
matrix represent the in-plane elastic deflection of the system when a concentrated load is applied to a generic section.

Now, the global susceptibility matrix ��G can be defined as
��G ¼ G½ �11 G½ �12
G½ �21 G½ �22

� �
ð15Þ
7
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where, due to the symmetry of the problem, G½ �11 is equal to G½ �22 and G½ �12 is equal to G½ �21.
The load vector �F and the displacement vector �U are defined as
F
�
¼ Ff g1

Ff g2

 �
U
�
¼ Uf g1

Uf g2

 �
ð16Þ
with Ff gi= f̂ i ns;xkð ÞDn
n o

for i ¼ 1;2, s ¼ 1; . . . ;N; and k = 1,. . .,Nk; and Uf gi= bUi xr ;xkð Þ
n o

for i ¼ 1;2, r ¼ 1; . . . ;N; and k =

1,. . .,Nk. Therefore, it is possible to describe the in-plane displacement of each cantilever in a convenient matrix form as a
canonical BEM formulation for a fixed value of temporal frequency xk, as
�U ¼ ��G�F ð17Þ

Equation (17) is the discrete version of integral Equation (13) and correlates displacements with loads by means of the

global response matrix of the system.

2.5. Analysis of the excitation sources

As final analysis, a study of the QTF dynamic response to distributed forces that are non-deterministic in nature, both in
time and space, is presented. In fact, this is the input kind acting on the QTF device during the experiments, in which, as
anticipated, two acoustic speakers are used as excitation sources for generating a white, random acoustic field.

The external force per unit length on both the cantilevers have been modelled, in the form of the product of two ergodic,
Dirac-Delta-correlated terms, respectively describing the time and space unpredictable behaviour of the external excitation.

The spatial behaviour of the random loading acting on a single cantilever of the QTF can be described, in a discrete form,
by the following autocorrelation matrix
��CX;i ¼ ��CX ¼ S 0ð Þ
X
��I ð18Þ
with i ¼ 1;2; ��I a N X N identity matrix and the intensity of the spatial part of the stochastic load S 0ð Þ
X defined as
SX;i qð Þ ¼ S 0ð Þ
X ¼

< bXi qð Þ
��� ���2 >

L
ð19Þ
where q indicates the radian spatial frequency, bXi qð Þ is the single realization of the spatial stochastic loading acting on each

cantilever and is equal to
ffiffiffiffiffiffiffi
S 0ð Þ
X

q
ei/X;i qð Þ, with /X;i qð Þ random phases uniformly distributed in the range from�p to p. In Eq. (19),

we assume the same intensity of spatial stochastic noise for both cantilevers S 0ð Þ
X;1 ¼ S 0ð Þ

X;2 ¼ S 0ð Þ
X .

A unique scalar coefficient S 0ð Þ
T , indicating the intensity of the temporal part of the stochastic load, is requested to describe

the temporal behaviour of the random loading, owing to the simultaneous operation of the excitation sources, equal to
ST xð Þ ¼ S 0ð Þ
T ¼

< T̂ xð Þ
��� ���2 >

Tp
ð20Þ
where Tp is the time duration of the stochastic process and T̂ xð Þ is the single realization of the temporal stochastic loading

acting on both cantilevers and is equal to
ffiffiffiffiffiffiffi
S 0ð Þ
T

q
ei/T xð Þ, with /T xð Þ random phases uniformly distributed in the range from �p

to p.
Now, the input power spectral density matrix for the entire system can be defined as
��SFF ¼ C0
��I ð21Þ
where ��I is a 2N x 2N identity matrix and C0, equal to S 0ð Þ
T S 0ð Þ

X , is only a scaling factor, which does not affect the shape of the
system response and the correct evaluation of the quality factor resonator. Therefore, the output power spectral density

matrix ��SUU can be obtained as [52]
��SUU ¼ ��G	��SFF
��GT ¼ C0

��G	��I��GT ð22Þ

where
��SUU ¼ SU1U1

	 

SU1U2

	 

SU2U1

	 

SU2U2

	 
" #

In particular, the matrices of the autoPSD are
SU1U1

	 
 ¼ C0 G½ �	11 G½ �T11 þ G½ �	12 G½ �T12
� �

ð23Þ
8
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SU2U2

	 
 ¼ C0 G½ �	22 G½ �T22 þ G½ �	21 G½ �T21
� �

ð24Þ
and, since G½ �11 ¼ G½ �22 and G½ �12 ¼ G½ �21 then SU1U1

	 

is equal to SU2U2

	 

.

By performing the matrix product in Equation (22) on the entire chosen temporal frequency range and extracting the dis-
crete autoPSD at the cantilever tip, we get
SUiUi
L;xkð Þ ¼ C0

XN
s¼1

Gii L; ns;xkð Þj j2 þ
XN
s¼1

Gij L; ns;xkð Þ�� ��2 !
ð25Þ
with i; j ¼ 1;2 and i– j; k ¼ 1; . . . ;Nk.
The computed description of the theoretical response requires the estimation of the fluid coefficient a and of the struc-

tural coupling stiffness k: this can be done by fitting the experimentally measured system response.

3. Experimental setup

The experimental setup adopted to completely assess the theoretical model is sketched in Figure 5. The QTF#S15, used in
our experimental test campaign, is a custom QTF having prong length of 9.4mm, width of 2.0mm and crystal thickness of
0.25mm. The prongs are spaced by 1.5mm, [24,25], as reported in Table 1.

The QTF is excited in laboratory air by a stochastic, white acoustic field, generated by two speakers. The QTF response is
measured by a LD Vibrometer. The experiments are carried out in static air at ambient temperature and atmospheric pres-
sure: in these thermodynamic conditions the fluid kinematic viscosity is m ¼ 1:48� 10�5m2 s�1, while the density
qf ¼ 1:23kgm�3. The setup is composed by: (i) a Polytec OFV-5000 modular LD vibrometer to measure the output response,
in several points of the QTF, in terms of displacement and velocity, (ii) two speakers to produce a white acoustic random field
for exciting the tuning fork structure, (iii) a Microtech Gefell 1/4” electret-measurement microphone M 370 to measure the
acoustic pressure in proximity of the sensor, (iv) a LMS SCADAS Recorder 09 mobile PC based multichannel analyzer plat-
form, running the LMS Test.Lab 14A software suite for generating the input electric signal to drive the speakers, and to
acquire and record the time histories of the output responses measured by the vibrometer and the microphone. The adopted
speakers’ lay-out is sketched in Figure 5.

The base of the sensor is connected to a stationary frame through two welded tin masses. Therefore, the QTF device is
modelled as fixed to the aforementioned frame by a bracket joint positioned on the base cross-section where the welded
masses are located. The welded parts of the resonator are excluded from the geometry of the QTF used in the model (see
Figure 6). Being the total length of the base plate equal to 5.1mm part and excluding the welded part of 1.5mm, a usable
length of the base plate equal to 3.6mm has been utilized in the calculations and reported as effective dimension in Table 1.

4. Results and discussion

In Figure 7, the autoPSD of the tip displacement of one prong is shown, in the frequency range from 14 to 17kHz, which
includes the first in-plane skew-symmetric flexural eigenfrequency of QTF#S15, approximately located at 15.8kHz [24].
Three different peaks, located at 14.590kHz, 15.808kHz and 16.170kHz were recorded in the experimental response: by per-
forming an in-vacuum 3D finite element (FE) analysis of QTF#S15 by the software COMSOL, the three resonances are related
Fig. 5. Schematic representation of the adopted experimental setup (left panel) and the real experimental setup (right panel).

9



Fig. 6. Real-world constraint of the QTF sensor by two tin weldings (left panel) and adopted constraint by bracket joint (right panel).
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to the first in-plane symmetric flexural mode, the first in-plane skew-symmetric flexural mode (the mode under investiga-
tion in this work, named hereafter as QEPAS mode), and to a torsional mode, having even out-of-plane displacement com-
ponents, respectively. The finite element mode shapes and their relative eigenfrequencies compared with the experimental
eigenfrequencies are depicted in the lower part of Figure 7.

As expected, owing to the adoption of a simple base-frame constraint model and since we are not considering any fluid-
structure interaction in the FE simulation, a discrepancy between simulated values of FE eigenfrequencies and experimental
peak frequencies is achieved. However, such a comparison between experimental outcomes and simplified FE results proves
to be useful for identifying the mode type corresponding to each peak frequency included in the considered range. Besides,
for the QEPAS mode, the relative error achieves an acceptable value, equal to 4%, due to the pure in-plane nature of such a
mode. Such experimental outcomes can be modelled by employing the approach presented in Section 2 and, thus, perform-
ing numerical analyses aimed at computing the PSD of the QTF output response at its cantilever tips. In particular, we
employed Equation (25), considering a spectral resolution Dx ¼ 2p� 0:4rads�1, equal to that one used in the experiments,
and a spatial discretization Dx ¼ Dn ¼ 0:31mm. The added mass mainly causes shifts in the flexural in-plane skew-
symmetric eigenfrequencies. However, it has been experimentally observed on several QTF geometries operating at very dif-
ferent air pressures (from 750 Torr to 25 Torr), that variations of air pressure surrounding the QTF causes slight shifts of res-
onance frequency and large variations of the hydrodynamic damping [22,23,33]. Thus, since the experiment is carried in
open air, the added mass can be neglected. In fact, as anticipated, lþ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=2x

p � qA xð Þ, where lþ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=2x

p
is the real part

of hydrodynamic function C xð Þ.
Then, a least squares fitting for all the remaining parameters can be performed: these include the diffusive-velocity coef-

ficient a and the coupling stiffness k; furthermore, the scaling factor C0 for the excitation source has to be properly set.
All assumed parameters and fitted values are listed in Table 2.
As a result, we obtain the theoretical response reported in Figure 8. In Figure 8, in the frequency range from 15.5 to

16.1kHz, which includes the skew-symmetric eigenfrequency xss of the QEPAS mode, we compare the experimental tip dis-
placement autoPSD (red solid line) to that one resulting from the theoretical model SUiUi

L;xð Þ, computed, by using the Equa-
tion (25), when accounting for two different descriptions of the external force acting on the QTF cantilevers. In a first case, a
perfectly white constant signal (green solid line) has been used as intensity of the temporal part of the external excitation in
the Equation (25). In a second case, the acoustic pressure signal, measured by the microphone during the tests, has been
employed as intensity of the temporal part of the external excitation (yellow solid line).

In Figure 8, we can conclude that experimental data can be satisfactorily fitted by the proposed theoretical model, with an
R2 of the theoretical fitted curve equal to 0.984. The quality factor value can be estimated bymeasuring the Full Width at Half
Maximum (FWHM) value of the resonance curve [52]. As a result, an excellent match between measured and simulated Q-
factor values is achieved, with a relative error with respect to the average experimental value, lower than 1%. We find
Q exp ¼ xss

Dx
¼ 15808

1:205
¼ 13119
 1182:5

Q th ¼ xss

Dx
¼ 15808

1:203
¼ 13140
10



Table 2
Values of fluid model coefficient and structural coupling stiffness which fit the experimental response.

Fitting coefficients a Pas3=2
	 


k Pa½ �

Values 2:341� 10�5 1:7865� 109

Fig. 7. The experimentally estimated autoPSD of the displacement measured at the tip of one QTF prong and the mode shape of each detected peak.
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Furthermore, let us observe that a specific aim of the approach presented in this paper is to enhance, in comparison with a
traditional fluid-structure interaction FE model, the intelligibility of the physical parameters governing the dynamics of the
phenomenon, in order to provide guidelines in designing of QTFs optimized for QEPAS gas sensing application. In particular,
the very good agreement between the experimental data and the numerical fitting model confirms that, as assumed when
formulating the hydrodynamic function, the system is dominated by a diffusive regime.

Therefore, let us focus on the analysis of the diffusive-velocity term. To this end, it is worth to point out that for the simple
analytical case, shown previously in the Section 2.2, that is, for a plate vibrating in a viscous fluid in its own plane [44], it is
possible to derive the analytical expression of the shear stress ŝzy x; y;xð Þ, exerted by the fluid on the surface, for a generic
time law u ¼ u tð Þ of the moving surface, as
11



Fig. 8. Comparison between the simulated autoPSD of QTF tip displacement computed by using (i) the theoretically modelled external excitation (green
curve) and (ii) the measured noise (yellow curve), and the experimental autoPSD of tip displacement (red curve). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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ŝzy x; y;xð Þ ¼ 1� ið Þ~a
ffiffiffiffi
p
2

r
x3=2û xð Þ ð26Þ
where the coefficient ~a is equal to ~a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gfqf =p

q
. By applying this result to the case of the QTF#S15, and integrating the shear

stress on both sides of the i-th cantilever, an analytical estimation aL for the diffusive-velocity coefficient can be obtained as
aL ¼ 2a
� Lb B

2 þ Lpb
L

� �
¼ 1:21� 10�5Pas3=2 ð27Þ
This is of the same order of magnitude of the value obtained by the implemented fitting procedure, thus, confirming the
consistency of the performed estimation of the value for this parameter. Clearly, on a quantitative level, there exists a dis-
crepancy between the analytical value of the diffusive coefficient aL and the fitted one, due to edge and 3D effects of the fluid.
Employing directly aL to calculate the quality factor would lead to a potentially poor estimation, but the crucial physical
point here is that the fluid dissipation for this case of a very thin tuning fork oscillating asymmetrically is completely char-
acterized by the diffusive regime; identifying the fluid regime is extremely useful as it allows to reduce the number of
parameters to fit and, thus, increase the physical intelligibility of the model. A more accurate estimation of a would need
a larger analysis on different QTFs geometry in order to understand how this parameter can be related to the shape of
the device. This is out of the scope of this paper, that is, to show the effectiveness of the proposed approach to model the
dynamic response.

Now, another important parameter in the proposed model is the coupling stiffness k that is needed to model the struc-
tural coupling between the two prongs due to the underlying base plate of QTF device, the latter, in turn, gives rise to the
skew-symmetric in-plane flexural QEPAS mode. It is worth pointing out that, by modelling the base plate as infinitely rigid
body and studying the bending dynamics of each single fixed-free prong as a single Euler-Bernoulli beam, a single first in-
plane flexural mode is obtained instead of a pair of symmetrical and skew-symmetrical ones. To account for both the modes,
it is crucial to consider the structural coupling. Specifically, we observe that the frequency position of the skew-symmetric
peak depends on k. While we have previously estimated the value of k by fitting the experimentally measured system
response, now, in order to enhance the physical intelligibility of the model, we focus on how to obtain a physical value of
k. The elastic behaviour of the base plate can be modelled as a continuous distribution of beams having infinitely small
cross-section. In this case, all the beams will be subjected to only normal stresses, as depicted in Figure 9 and the axial stiff-
ness of each beam can be calculated as
dj ¼ Eh
g
dx ð28Þ
where g is the distance between the two cantilevers’ axes, equal to B=2, as represented in Figure 9. Thus, the coupling stiff-
ness per unit length k ¼ dj=dx can be considered expressed by
12



Fig. 9. Modelling of the elastic behaviour of the QTF inferior plate as a distribution of linear springs all subjected to only axial stress.
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k ¼ Eh
g

ð29Þ
which decreases if the gap between the cantilevers is increased, as also confirmed in [20].
By using Equation (29), k is equal to 6� 109Nm2, which is almost three times larger than the fitted value, as reported in

Table 2. However, we have to consider that the corresponding skew-symmetric mode frequency is located at 16.694kHz (see
Figure 10), with a relative error of 5:6 % when compared to the actual frequency value equal to 15.808kHz. This allows to
conclude that even a rough estimation of the coupling stiffness k leads only to a small error on the QEPAS mode frequency,
implying that the expression (29) can be suggested for improving the model predictivity. By using the estimated value of k,
the frequency peak position slightly increases, but the shape and the FWHM value of the resonance curve remain almost the
same, as shown in Figure 10, leading to a Q-factor characterized by an acceptable relative error of 4:3%, with respect to the
experimental value Q exp ¼ 13119, that is
Q thjk¼Eh=g ¼
xss

Dx
¼ 16694

1:22
¼ 13684 � Qexp
1.5 1.55 1.6 1.65 1.7 1.75
f [Hz] 104
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Experimental results

Theoretical Model with Measured Noise

Theoretical Model with Theoretical Noise

. Comparison between the simulated autoPSD of QTF tip displacement computed, in the case k ¼ Eh=g, by using (i) the theoretically modelled
l excitation (green curve) and (ii) the measured noise (yellow curve), and the experimental PSD of tip displacement (red curve). (For interpretation of
rences to colour in this figure legend, the reader is referred to the web version of this article.)
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5. Conclusion

In this work, we developed a numerical approach, relying on Boundary Element Methodology (BEM), to study the
dynamic analysis of a quartz tuning fork (QTF) vibrating in a fluid environment. In detail, the quartz tuning fork has been
modelled as a pair of Euler-Bernoulli cantilevers coupled by distributed linear springs with constant stiffness. The model
takes into account the interaction between the QTF and the surrounding fluid. This is crucial for an accurate estimation of
the quality factor of the first skew-symmetric in-plane flexural vibrational mode, corresponding to the specific mode at
which the QTF is excited when employed as resonator in a QEPAS sensor. To this aim, an innovative analytical model of
the fluid-structure interaction has been proposed, accounting for the inertial, the purely viscous and the diffusive terms.
Due to the system linearity, the force exerted by the liquid on the body is the sum of these three contributions. Finally,
the dynamic analysis of the problem has been reduced to the solution of an integral equation based on a properly defined
Green’s function, which takes into account the aforementioned terms, related to the fluid, and the elasticity of the two cou-
pled beams. In comparison with a Finite Element approach, such an integrated strategy offers a high computational effi-
ciency and the possibility of understanding how each parameter of the system influences the overall dynamic response.

In order to tune the model, a proper vibro-acoustic experimental setup has been implemented: the in-plane flexural
vibration of a custom QTF immersed in air and excited by a white noise source have been acquired. The experimental data
have been perfectly fitted by means of the proposed BEM-based model in a range of frequency close to the flexural mode
typically excited in the QEPAS application, i.e. the first in-plane skew-symmetric flexural mode. By corroborating the theo-
retical model with experimental results, the effect of the diffusive-velocity term, originally derived by Landau [44] for the in-
plane motion in a viscous fluid of an infinite half-space, and the effect of the structural coupling term have been analyzed and
discussed. The first one is crucial to correctly estimate the system damping and, thus, the Q-factor; the second one, related to
the structural coupling, is necessary to couple the two prongs and, thus, to be able to observe the skew-symmetric in-plane
flexural mode. The value of the structural coupling stiffness affects only the position of the skew-symmetric peak and can be
obtained by fitting the experimental data; alternatively, an approximate estimation of this value, based on theoretical con-
siderations, leads to a still relatively good assessment of the skew-symmetric frequency and can make more predictive the
model.

However, the proposed methodology requires an experimental fit for retrieving fluid coefficients and, in particular, for the
a parameter, which marks the diffusive regime that governs the fluid-solid interaction. At the same time, it is crucial to
underline that the proposed approach provides direct insights on the overall performance of the QTF and, more generally,
can be considered a reliable procedure to analyze the fluid-structure interaction of a generic micro-electrical-mechanical
device.

CRediT authorship contribution statement

A. Campanale: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Writing - original
draft, Writing - review & editing, Visualization. C. Putignano: Conceptualization, Methodology, Validation, Formal analysis,
Investigation, Resources, Writing - review & editing, Visualization. S. De Carolis: Conceptualization, Methodology, Valida-
tion, Formal analysis, Investigation, Resources, Writing - review & editing, Visualization. P. Patimisco: Conceptualization,
Investigation, Resources, Writing - review & editing, Visualization. M. Giglio: Conceptualization, Investigation, Resources,
Writing - review & editing, Visualization. L. Soria: Conceptualization, Methodology, Validation, Formal analysis, Investiga-
tion, Resources, Writing - review & editing, Visualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The authors thank Prof. Armenise and Prof. Ciminelli for providing access to experimental facilities in the Optoelectronics
Laboratory at Polytechnic University of Bari, and Prof. Carbone and Prof. Spagnolo for the useful comments on the paper.
Finally, the partial support of the Italian Ministry of Education, University and Research under the Programme Department
of Excellence (Legge 232/2016 Grant No. CUP-D94I18000260001) is gratefully acknowledged.

Appendix A. Details of the solution scheme for the fundamental problem

Here, the fundamental problem, in which an impulsive force is applied to a section n of the bottom beam of the left can-
tilever, while the right one remains unloaded, is solved. We rewrite the set of Eqs. (12) for the fundamental problem,
sketched in Figure 11, left panel, as
14



Fig. 11. 1D Euler-Bernoulli model of the fundamental problem. Fundamental problem with an impulsive force applied to a generic section n of the left
cantilever (left panel), reduction of the fundamental problem to an homogeneous problem (right panel).
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@4G x; n;xð Þ
@x4

þ �B x;xð ÞG x; n;xð Þ ¼ �f x; n;xð Þ ðA:30Þ
where G x; n;xð Þ = G11 x; n;xð Þ;G21 x; n;xð Þf gT and �f x; n;xð Þ = d x� nð Þ;0f gT .
The x-dependence of �B x;xð Þ is due to the step discontinuity on the cross-section of the cantilevers at x ¼ Lb which makes

the system of Equations (A.30) non-linear. However, this problem can be easily overcome by sub-splitting the solution
G11 x; n;xð Þ into G11b x; n;xð Þ and G11p x; n;xð Þ defined respectively for 0 < x < Lb, depicted in blue in Figure 11, and for
Lb 6 x < L, depicted in red; similarly for G21 x; n;xð Þ.

Therefore, the fundamental problem can be rewritten in the following form
@4G x; n;xð Þ
@x4

þ �B xð ÞG x; n;xð Þ ¼ �f x; n;xð Þ ðA:31Þ
where G x; n;xð Þ = G11b x; n;xð Þ;G21b x; n;xð Þ;G11p x; n;xð Þ;G21p x; n;xð Þ� �T
; f

�
x; n;xð Þ = d x� nð Þ;0;0;0f gT and
�B xð Þ ¼

Bb xð Þ � k
EJb

0 0

� k
EJb

Bb xð Þ 0 0

0 0 Bp xð Þ 0
0 0 0 Bp xð Þ

0BBBB@
1CCCCA
with Bb xð Þ ¼ 1=EJbð Þ �x2 qAb � ia
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=2x

p� �
þ k

� �
and Bp xð Þ ¼ 1=EJp

� � �x2 qAp � ia
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=2x

p� �� �
.

The set of Equations (A.31) is equivalent to the homogeneous problem depicted in Figure 11, right panel, that can be writ-
ten as
@4G x; n;xð Þ
@x4

þ �B xð ÞG x; n;xð Þ ¼ 0 ðA:32Þ
with G x; n;xð Þ = GI
11b x; n;xð Þ;GI

21b x; n;xð Þ;GII
11b x; n;xð Þ;GII

21b x; n;xð Þ;GII
11p x; n;xð Þ;GII

21p x; n;xð Þ
n oT

and
�B xð Þ ¼

Bb xð Þ � k
EJb

0 0 0 0

� k
EJb

Bb xð Þ 0 0 0 0

0 0 Bb xð Þ � k
EJb

0 0

0 0 � k
EJb

Bb xð Þ 0 0

0 0 0 0 Bp xð Þ 0
0 0 0 0 0 Bp xð Þ

0BBBBBBBBBB@

1CCCCCCCCCCA

where the functions GI

11b x; n;xð Þ and GI
21b x; n;xð Þ are defined for 0 < x < n, the functions GII

11b x; n;xð Þ and GII
21b x; n;xð Þ are

defined for n 6 x < Lb and the functions GII
11p x; n;xð Þ and GII

21p x; n;xð Þ are defined for Lb 6 x < L.
The set of Equations (A.32) comprises six coupled differential equations of fourth order needing the following 24 bound-

ary conditions: fixed conditions at x ¼ 0, continuity conditions at x ¼ n , except for the third derivative of the solutions
15
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GI
11b x; n;xð Þ and GII

11b x; n;xð Þ of the bottom-left beam since a concentrated force is applied to section n of the left cantilever,
continuity conditions at x ¼ Lb, and free-end conditions at x ¼ L.

All the 24 boundary conditions are reported in detail at the end of this Appendix.
Next, we solve the associated eigenvalues problem [39] for the generic eigenvalue k and the associated eigenvector v,

written as
��B xð Þ � k xð Þ��I6
� �

v ¼ 0 ðA:33Þ
where I6 is the identity matrix of sixth order; then, we obtain the scaled modal matrix, as
��W ¼

1ffiffi
2

p 1ffiffi
2

p 0 0 0 0
1ffiffi
2

p � 1ffiffi
2

p 0 0 0 0

0 0 1ffiffi
2

p 1ffiffi
2

p 0 0

0 0 1ffiffi
2

p � 1ffiffi
2

p 0 0

0 0 0 0 1 0
0 0 0 0 0 1

0BBBBBBBBBB@

1CCCCCCCCCCA

It is worth to point out that the eigenvector 1ffiffi

2
p ; 1ffiffi

2
p ;0;0; 0;0

n oT
corresponds to the symmetric vibration mode of the solu-

tions GI
11b x; n;xð Þ and GI

21b x; n;xð Þ, in which both cantilevers vibrate in phase with the same magnitude, and the eigenvector

0;0; 1ffiffi
2

p ; 1ffiffi
2

p ;0;0
n oT

corresponds to the symmetric vibration mode of the solutions GII
11b x; n;xð Þ and GII

21b x; n;xð Þ, while the

eigenvector 1ffiffi
2

p ;� 1ffiffi
2

p ; 0;0;0;0
n oT

corresponds to the skew-symmetric vibration mode of the solutions GI
11b x; n;xð Þ and

GI
21b x; n;xð Þ, in which both cantilevers vibrate out of phase with the same magnitude, and the eigenvector

0;0; 1ffiffi
2

p ;� 1ffiffi
2

p ;0;0
n oT

corresponds to the skew-symmetric vibration mode of the solutions GII
11b x; n;xð Þ and GII

21b x; n;xð Þ.
The modal matrix (5) allows for transforming the beam deflection field G to the modal coordinates �q, by means of the

following relation
�G ¼ ��W�q ðA:34Þ
where �q ¼ q1; q2; q3; q4; q5; q6f gT is the vector of the modal coordinates. By substituting (A.34) into (A.31) and premultiplying

for ��WT , the Equation (A.31) can be rewritten in modal coordinates, as
@4�q x; n;xð Þ
@x4

þ ki xð Þ��I6�q x; n;xð Þ ¼ 0 ðA:35Þ
This is a system of six uncoupled fourth order partial differential equations, whose general solution can be written as
qi x; n;xð Þ ¼ ai cosh
ffiffiffiffiffiffiffiffiffiffiffiffi
ki xð Þ4

p
x

� �
þ a2i sinh

ffiffiffiffiffiffiffiffiffiffiffiffi
ki xð Þ4

p
x

� �
þ a3i cos

ffiffiffiffiffiffiffiffiffiffiffiffi
ki xð Þ4

p
x

� �
þ a4i sin

ffiffiffiffiffiffiffiffiffiffiffiffi
ki xð Þ4

p
x

� �
ðA:36Þ
where ai; a2i; a3i and a4i for i ¼ 1; . . . ;6 are integration constants.
Once the solution is known in modal coordinates, it is possible to switch back to the physical coordinates by means of

Equation (A.34) and numerically solve the set of 24 boundary conditions for fixed n and x to obtain the 24 integration con-
stants. The global susceptibility functions of the two cantilevers G11 x; n;xð Þ, for the left loaded cantilever, and G21 x; n;xð Þ, for
the right not loaded cantilever, are given by piecewise functions, as
G11 x; n;xð Þ ¼
GI

11b x; n;xð Þ 0 < x < n

GII
11b x; n;xð Þ n < x < Lb

GII
11p x; n;xð Þ Lb < x < L

8>><>>: ðA:37Þ

G21 x; n;xð Þ ¼
GI

21b x; n;xð Þ 0 < x < n

GII
21b x; n;xð Þ n < x < Lb

GII
21p x; n;xð Þ Lb < x < L

8>><>>: ðA:38Þ
The fundamental problem can be similarly solved for an impulsive force applied to a different section n, in order to obtain
the 3D matrices G½ �ij for both cantilevers, as explained in subSection 2.4.

The boundary conditions for the homogeneous fundamental problem, Equation (A.32), are
16
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� at x ¼ 0
GI
11b 0; n;xð Þ ¼ @GI

11b x;n;xð Þ
@x jx¼0 ¼ 0

GI
21b 0; n;xð Þ ¼ @GI

21b x;n;xð Þ
@x jx¼0 ¼ 0

ðA:39Þ
� at x ¼ n
GI
11b n; n;xð Þ ¼ GII

11b n; n;xð Þ
@GI

11b x;n;xð Þ
@x jx¼n ¼ @GII

11b x;n;xð Þ
@x jx¼n

@2GI
11b x;n;xð Þ
@x2 jx¼n ¼ @2GII

11b x;n;xð Þ
@x2

jx¼n

@3GII
11b x;n;xð Þ
@x3 jx¼n � @3GI

11b x;n;xð Þ
@x3

jx¼n ¼ 1

GI
21b n; n;xð Þ ¼ GII

21b n; n;xð Þ
@GI

21b x;n;xð Þ
@x jx¼n ¼ @GII

21b x;n;xð Þ
@x jx¼n

@2GI
21b x;n;xð Þ
@x2 jx¼n ¼ @2GII

21b x;n;xð Þ
@x2

jx¼n

@3GII
21b x;n;xð Þ
@x3 jx¼n ¼ @3GI

21b x;n;xð Þ
@x3

jx¼n

ðA:40Þ
� at x ¼ Lb
GII
11b Lb; n;xð Þ ¼ GII

11p Lb; n;xð Þ
@GII

11b x;n;xð Þ
@x jx¼Lb

¼ @GII
11p x;n;xð Þ

@x jx¼Lb

EJb
@2GII

11b x;n;xð Þ
@x2 jx¼Lb

¼ EJp
@2GII

11p x;n;xð Þ
@x2 jx¼Lb

EJb
@3GII

11b x;n;xð Þ
@x3 jx¼Lb

¼ EJp
@3GII

11p x;n;xð Þ
@x3 jx¼Lb

GII
21b Lb; n;xð Þ ¼ GII

21p Lb; n;xð Þ
@GII

21b x;n;xð Þ
@x jx¼Lb

¼ @GII
21p x;n;xð Þ

@x jx¼Lb

EJb
@2GII

21b x;n;xð Þ
@x2 jx¼Lb

¼ EJp
@2GII

21p x;n;xð Þ
@x2 jx¼Lb

EJb
@3GII

21b x;n;xð Þ
@x3 jx¼Lb

¼ EJp
@3GII

21p x;n;xð Þ
@x3 jx¼Lb

ðA:41Þ
� at x ¼ Lb þ Lp ¼ L
@2GII
11p x;n;xð Þ
@x2 jx¼L ¼

@3GII
11p x;n;xð Þ
@x3 jx¼L ¼ 0

@2GII
21p x;n;xð Þ
@x2 jx¼L ¼

@3GII
21p x;n;xð Þ
@x3 jx¼L ¼ 0

ðA:42Þ

Appendix B. Estimation of the hydrodynamic function’s coefficients by computational fluid dynamics finite element
simulations.

Here, the values of coefficients c;a, and l of hydrodynamic function C xð Þ, in Equation (9), are estimated by analysing,
through computational fluid dynamics (CFD) simulations, the 2D unsteady Stokes’ flow induced by the harmonic skew-
symmetric oscillation, along the y-axis, of two identical rigid bodies, shaped as the prong cross-sections and immersed in
an unbounded viscous incompressible medium. We, specifically, consider the fluid flow being 2D, since we hypothesize,
as anticipated, the motion of cross-sections occurring in their yz-plane and the fluid velocity component along the can-
tilevers’ x-axes being negligible.

The considered range of time frequencies is f 2 103;105
h i

Hz, in which five simulations per decade are performed. Each

simulation is executed until the steady state of periodic regime is reached. The geometry of the computational domain along
with the imposed boundary conditions is represented in Figure 12. By taking into account the geometric symmetry of the
problem with respect to the motion y-direction and the further fluid dynamic symmetry with respect to the z-axis, due
to the specific, considered out of phase oscillation, only one quarter of the whole domain is simulated. No-slip boundary con-
ditions at the fluid-body interface and at the right edge of the computational domain are enforced; symmetry conditions are,
thus, set along the left and bottom edges, while an open boundary condition is imposed at the top edge, as reported in
Figure 12.

The problem is simulated by the finite element solver COMSOLMultiphysics, adopting a modeling technique based on the
Laminar Flow (spf) and Moving Mesh (ale) physics interfaces. In particular, the P2 + P1 discretization is used, that is, piece-
17



Fig. 12. Computational domain along with moving mesh regions and boundary conditions.
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wise quadratic and linear interpolation, respectively, for velocity and pressure, combined with the default streamline diffu-
sion and crosswind diffusion consistent stabilization methods, and with an extremely fine, physics-controlled moving mesh.

For each considered frequency value, by integration on the fluid-body interface, the time history of the force exerted by
the fluid on the moving cross-section is computed. In particular, the y-component of these forces allows to extract the ampli-
tude and the phase lag of the hydrodynamic function C xð Þ with respect to the imposed displacement by Equation (8). It is
worth pointing out that, in case of unsteady Stokes’ flow and, thus, oscillations of small amplitude, owing to the linearity of
the problem, the computed force time histories are harmonic signals at the same radian frequency x of the imposed
movement.

The requisite values of coefficients c;a, and l, are collected in Table 3 and estimated by implementing a specific nonlinear
fitting strategy of achieved numerical results, relying on the approximate expression Equation (9) of the hydrodynamic func-
tion C xð Þ. By adopting a purely diffusive model of the imaginary part of the hydrodynamic function, i.e. by assuming
c ¼ 0 Pas, we estimate, for the sole diffusive-velocity coefficient, the value a ¼ 1:70� 10�5 Pas3=2. We point out that the
observed discrepancy between the experimental value of the coefficient and that obtained by the numerical procedure here
reported is related to the ensemble of effects which have been neglected, as well as to the measurements’ uncertainties.

In Figure 13, the real and the imaginary parts of the hydrodynamic function C xð Þ are shown, evaluated by the approx-
imate expression Equation (9) and computed by using the fitted values of the coefficients c;a, and l, collected in Table 3. By
even representing the single summands l;a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p= 2xð Þp

, and c=x, and highlighting the QEPAS mode frequency location, it is
clearly possible to see, from the analysis of imaginary part, that the linear viscous damping term is basically negligible, with
respect to the importance of the diffusive-velocity term, as expected, given the small difference between the a fitted values
with c – 0 Pas or c ¼ 0 Pas. Given, moreover, the negligible importance of mass adding, as also expected and testified by the
experimental results presented in Refs. [22–33], it is straightforward to conclude that the two conditions cx�1 � a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=2x

p
and lþ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=2x

p � qA xð Þ describe the purely a-driven regime which characterizes the QTF forced vibration at the QEPAS
frequency.

We consider useful to stress that only one hydrodynamic function is sufficient to describe the hydrodynamic coupling
between the two cantilevers vibrating at the QEPAS resonance frequency. In fact, while in Ref. [39], it is proven that two
independent hydrodynamic functions are needed to thoroughly identify the system dynamics in each possible coupling con-
dition, in case of skew-symmetric vibration, here under investigation, given the same motion amplitude of the bodies, only
one function describes the specific situation, which corresponds to a simple linear combination of the two above recalled
Table 3
Values of fluid model coefficients which fit the CFD numerical results.

Fitting coefficients c Pas½ � a Pas3=2
	 


l Pas2
	 


Values 9:88� 10�5 1:62� 10�5 1:36� 10�7
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Fig. 13. Real and imaginary parts of hydrodynamic function C xð Þ. Comparison between approximate expression (9) evaluated with fitted coefficients
collected in Table 3 (solid line) and CFD numerical results (squared markers). Single summands l (dotted line), a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p= 2xð Þp

(dotted-dashed line), and c=x
(dashed line) of real and imaginary part are represented to elucidate their relative importance. The experimentally estimated PSD (solid dots) is reported to
highlight the frequency location of the first QTF skew-symmetric in-plane flexural mode.
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independent functions. Therefore, a-values here estimated account for the hydrodynamic coupling existing between the two
oscillating cantilevers.
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