152 research outputs found
Bovine liver slices combined with an androgen transcriptional activation assay: an in-vitro model to study the metabolism and bioactivity of steroids
Previously we described the properties of a rapid and robust yeast androgen bioassay for detection of androgenic anabolic compounds, validated it, and showed its added value for several practical applications. However, biotransformation of potent steroids into inactive metabolites, or vice versa, is not included in this screening assay. Within this context, animal-friendly in-vitro cellular systems resembling species-specific metabolism can be of value. We therefore investigated the metabolic capacity of precision-cut slices of bovine liver using 17β-testosterone (T) as a model compound, because this is an established standard compound for assessing the metabolic capacity of such cellular systems. However, this is the first time that slice metabolism has been combined with bioactivity measurements. Moreover, this study also involves bioactivation of inactive prohormones, for example dehydroepiandrosterone (DHEA) and esters of T, and although medium extracts are normally analyzed by HPLC, here the metabolites formed were identified with more certainty by ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC–TOFMS) with accurate mass measurement. Metabolism of T resulted mainly in the formation of the less potent phase I metabolites 4-androstene-3,17-dione (4-AD), the hydroxy-T metabolites 6α, 6β, 15β, and 16α-OH-T, and the phase II metabolite T-glucuronide. As a consequence the overall androgenic activity, as determined by the yeast androgen bioassay, decreased. In order to address the usefulness of bovine liver slices for activation of inactive steroids, liver slices were exposed to DHEA and two esters of T. This resulted in an increase of androgenic activity, because of the formation of 4-AD and T
Primary cilia organization reflects polarity in the growth plate and implies loss of polarity and mosaicism in osteochondroma
Primary cilia are specialized cell surface projections found on most cell types. Involved in several signaling pathways, primary cilia have been reported to modulate cell and tissue organization. Although they have been implicated in regulating cartilage and bone growth, little is known about the organization of primary cilia in the growth plate cartilage and osteochondroma. Osteochondromas are bone tumors formed along the growth plate, and they are caused by mutations in EXT1 or EXT2 genes. In this study, we show the organization of primary cilia within and between the zones of the growth plate and osteochondroma. Using confocal and electron microscopy, we found that in both tissues, primary cilia have a similar formation but a distinct organization. The shortest ciliary length is associated with the proliferative state of the cells, as confirmed by Ki-67 immunostaining. Primary cilia organization in the growth plate showed that non-polarized chondrocytes (resting zone) are becoming polarized (proliferating and hypertrophic zones), orienting the primary cilia parallel to the longitudinal axis of the bone. The alignment of primary cilia forms one virtual axis that crosses the center of the columns of chondrocytes reflecting the polarity axis of the growth plate. We also show that primary cilia in osteochondromas are found randomly located on the cell surface. Strikingly, the growth plate-like polarity was retained in sub-populations of osteochondroma cells that were organized into small columns. Based on this, we propose the existence of a mixture ('mosaic') of normal lining (EXT+/- or EXTwt/wt) and EXT-/- cells in the cartilaginous cap of osteochondromas. Laboratory Investigation (2010) 90, 1091-1101; doi:10.1038/labinvest.2010.81; published online 26 April 2010Molecular tumour pathology - and tumour genetic
Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells
The C-type lectin dendritic cell (DC)–specific intercellular adhesion molecule grabbing non-integrin (DC-SIGN; CD209) facilitates binding and internalization of several viruses, including HIV-1, on DCs, but the underlying mechanism for being such an efficient phagocytic pathogen-recognition receptor is poorly understood. By high resolution electron microscopy, we demonstrate a direct relation between DC-SIGN function as viral receptor and its microlocalization on the plasma membrane. During development of human monocyte-derived DCs, DC-SIGN becomes organized in well-defined microdomains, with an average diameter of 200 nm. Biochemical experiments and confocal microscopy indicate that DC-SIGN microdomains reside within lipid rafts. Finally, we show that the organization of DC-SIGN in microdomains on the plasma membrane is important for binding and internalization of virus particles, suggesting that these multimolecular assemblies of DC-SIGN act as a docking site for pathogens like HIV-1 to invade the host
Formalin-Fixed, Paraffin-Embedded–Targeted Locus Capture:A Next-Generation Sequencing Technology for Accurate DNA-Based Gene Fusion Detection in Bone and Soft Tissue Tumors
Chromosomal rearrangements are important drivers in cancer, and their robust detection is essential for diagnosis, prognosis, and treatment selection, particularly for bone and soft tissue tumors. Current diagnostic methods are hindered by limitations, including difficulties with multiplexing targets and poor quality of RNA. A novel targeted DNA-based next-generation sequencing method, formalin-fixed, paraffin-embedded–targeted locus capture (FFPE-TLC), has shown advantages over current diagnostic methods when applied on FFPE lymphomas, including the ability to detect novel rearrangements. We evaluated the utility of FFPE-TLC in bone and soft tissue tumor diagnostics. FFPE-TLC sequencing was successfully applied on noncalcified and decalcified FFPE samples (n = 44) and control samples (n = 19). In total, 58 rearrangements were identified in 40 FFPE tumor samples, including three previously negative samples, and none was identified in the FFPE control samples. In all five discordant cases, FFPE-TLC could identify gene fusions where other methods had failed due to either detection limits or poor sample quality. FFPE-TLC achieved a high specificity and sensitivity (no false positives and negatives). These results indicate that FFPE-TLC is applicable in cancer diagnostics to simultaneously analyze many genes for their involvement in gene fusions. Similar to the observation in lymphomas, FFPE-TLC is a good DNA-based alternative to the conventional methods for detection of rearrangements in bone and soft tissue tumors.</p
Structural Changes of the Paraflagellar Rod during Flagellar Beating in Trypanosoma cruzi
, the agent of Chagas disease, is a protozoan member of the Kinetoplastidae family characterized for the presence of specific and unique structures that are involved in different cell activities. One of them is the paraflagellar rod (PFR), a complex array of filaments connected to the flagellar axoneme. Although the function played by the PFR is not well established, it has been shown that silencing of the synthesis of its major proteins by either knockout of RNAi impairs and/or modifies the flagellar motility.Here, we present results obtained by atomic force microscopy (AFM) and transmission electron microscopy (TEM) of replicas of quick-frozen, freeze-fractured, deep-etched and rotary-replicated cells to obtain detailed information of the PFR structures in regions of the flagellum in straight and in bent state. The images obtained show that the PFR is not a fixed and static structure. The pattern of organization of the PFR filament network differs between regions of the flagellum in a straight state and those in a bent state. Measurements of the distances between the PFR filaments and the filaments that connect the PFR to the axoneme as well as of the angles between the intercrossed filaments supported this idea.Graphic computation based on the information obtained allowed the proposal of an animated model for the PFR structure during flagellar beating and provided a new way of observing PFR filaments during flagellar beating
Application of Probabilistic Neural Networks to microhabitat suitability modelling for adult brown trout (Salmo trutta L.) in Iberian rivers
Probabilistic Neural Networks (PNN) have been tested for the first time in microhabitat suitability modelling for adult brown trout (Salmo trutta L.). The impact of data prevalence on PNN was studied. The PNN were evaluated in an independent river and the applicability of PNN to assess the environmental flow was analysed. Prevalence did not affect significantly the results. However PNN presented some limitations regarding the output range. Our results agreed previous studies because trout preferred deep microhabitats with medium-to-coarse substrate whereas velocity showed a wider suitable range. The 0.5 prevalence PNN showed similar classificatory capability than the 0.06 prevalence counterpart and the outputs covered the whole feasible range (from 0 to 1), but the 0.06 prevalence PNN showed higher generalisation because it performed better in the evaluation and it allowed a better modulation of the environmental flow. PNN has demonstrated to be a tool to be into consideration.The authors would like to thank the Spanish Ministry of Economy and Competitiveness for its financial support through the SCARCE project (Consolider-Ingenio 2010 CSD2009-00065). We are grateful to the colleagues who worked in the field and in the preliminary data analyses, especially Marta Bargay, Aina Hernandez and David Argibay. The works were partially funded by the Confederacion Hidrografica del Jucar (Spanish Ministry of Agriculture, Food and Environment), that also provided hydrological and environmental information about the study sites. The authors also thank the Direccion General del Agua and INFRAECO for the cession of the microhabitat data. Finally, we also thank Javier Ferrer, Teodoro Estrela and Onofre Gabaldo (Confederacion Hidrografica del Jucar) for their help and the data provided. Thanks to Grieg Davies for the academic review of English.Muñoz Mas, R.; Martinez-Capel, F.; Garófano-Gómez, V.; Mouton, A. (2014). Application of Probabilistic Neural Networks to microhabitat suitability modelling for adult brown trout (Salmo trutta L.) in Iberian rivers. Environmental Modelling and Software. 59:30-43. https://doi.org/10.1016/j.envsoft.2014.05.003S30435
Immunomagnetic microbeads for screening with flow cytometry and identification with nano-liquid chromatography mass spectrometry of ochratoxins in wheat and cereal
Multi-analyte binding assays for rapid screening of food contaminants require mass spectrometric identification of compound(s) in suspect samples. An optimal combination is obtained when the same bioreagents are used in both methods; moreover, miniaturisation is important because of the high costs of bioreagents. A concept is demonstrated using superparamagnetic microbeads coated with monoclonal antibodies (Mabs) in a novel direct inhibition flow cytometric immunoassay (FCIA) plus immunoaffinity isolation prior to identification by nano-liquid chromatography–quadrupole time-of-flight-mass spectrometry (nano-LC-Q-ToF-MS). As a model system, the mycotoxin ochratoxin A (OTA) and cross-reacting mycotoxin analogues were analysed in wheat and cereal samples, after a simple extraction, using the FCIA with anti-OTA Mabs. The limit of detection for OTA was 0.15 ng/g, which is far below the lowest maximum level of 3 ng/g established by the European Union. In the immunomagnetic isolation method, a 350-times-higher amount of beads was used to trap ochratoxins from sample extracts. Following a wash step, bound ochratoxins were dissociated from the Mabs using a small volume of acidified acetonitrile/water (2/8 v/v) prior to separation plus identification with nano-LC-Q-ToF-MS. In screened suspect naturally contaminated samples, OTA and its non-chlorinated analogue ochratoxin B were successfully identified by full scan accurate mass spectrometry as a proof of concept for identification of unknown but cross-reacting emerging mycotoxins. Due to the miniaturisation and bioaffinity isolation, this concept might be applicable for the use of other and more expensive bioreagents such as transport proteins and receptors for screening and identification of known and unknown (or masked) emerging food contaminants
Metastatic potential of an aneurysmal bone cyst
Aneurysmal bone cysts (ABCs) are benign bone tumors consisting of blood-filled cavities lined by connective tissue septa. Recently, the hypothesis that ABCs are lesions reactive to local hemodynamics has been challenged after the discovery of specific recurrent chromosomal abnormalities. Multiple cases of malignant transformation of ABC into (osteo)sarcoma have been described, as well as a number of cases of telangiectatic osteosarcoma which had been misdiagnosed as ABC. We herewith document a case of a pelvic ABC metastatic to the lung, liver, and kidneys. Diagnosis was confirmed by the presence of a break in the USP6 gene, which is pathognomonic for ABC, in a pulmonary metastasis of our patient. Sarcomatous transformation as an explanation for this behavior was ruled out by demonstrating diploid DNA content in both the pulmonary lesion and the primary tumor
- …