122 research outputs found

    Novel vaccination strategies against human respiratory syncytial virus

    Get PDF

    How do root and soil characteristics affect the erosion-reducing potential of plant species?

    Get PDF
    Plant roots can be very effective in stabilizing the soil against concentrated flow erosion. So far, most research on the erosion-reducing potential of plant roots was conducted on loamy soils. However susceptible to incisive erosion processes, at present, no research exists on the effectiveness of plant roots in reducing concentrated flow erosion rates in sandy soils. Therefore, the prime objective of this study was to assess the erosion-reducing potential of both fibrous and tap roots in sandy soils. Furthermore, we investigated potential effects of root diameter, soil texture and dry soil bulk density on the erosion-reducing potential of plant roots. Therefore, flume experiments conducted on sandy soils (this study) were compared with those on sandy loam and silt loam soils (using the same experimental set up). Results showed that plant roots were very efficient in reducing concentrated flow erosion rates in sandy soils compared to root-free bare soils. Furthermore, our results confirmed that fibrous roots were more effective compared to (thick) tap roots. Dry soil bulk density and soil texture also played a significant role. As they were both related to soil cohesion, the results of this study suggested that the effectiveness of plant roots in controlling concentrated flow erosion rates depended on the apparent soil cohesion. The nature of this soil type effect depended on the root-system type: fine root systems were most effective in non-cohesive soils while tap root systems were most effective in cohesive soils. For soils permeated with a given amount of fibrous roots, an increase of soil bulk density seemed to hamper the effectiveness of roots to further increase soil cohesion and reduce erosion rates. In soils reinforced by tap root systems, the erosion-reducing power of the roots depended on sand content: the higher the percentage of sand, the smaller the erosion-reducing effect for a given amount of roots. This was attributed to more pronounced vortex erosion around the thicker tap roots in non-cohesive soils, increasing soil erosion rates. The results presented in this study could support practitioners to assess the likely erosion-reducing effects of plant root systems based on both root and soil characteristics

    Gazing at the partner in musical trios: a mobile eye-tracking study

    Get PDF
    Few investigations into the nonverbal communication in ensemble playing have focused on gaze behaviour up to now. In this study, the gaze behaviour of musicians playing in trios was recorded using the recently developed technique of mobile eye-tracking. Four trios (clarinet, violin, piano) were recorded while rehearsing and while playing several runs through the same musical fragment. The current article reports on an initial exploration of the data in which we describe how often gazing at the partner occurred. On the one hand, we aim to identify possible contrasting cases. On the other, we look for tendencies across the run-throughs. We discuss the quantified gaze behaviour in relation to the existing literature and the current research design

    Assessment of silt from sand and gravel processing as a suitable sub-soil material in land restoration: A glasshouse study

    Get PDF
    Annually, sand and gravel processing generates approximately 20 million tonnes of non-commercial by-product as fine silt particles (<63 μm) which constitutes approximately 20% of quarry production in the UK. This study is significant as it investigated the use of quarry silt as a sub-soil medium to partially substitute soil-forming materials whilst facilitating successful post-restoration crop establishment. In a glasshouse pot experiment, top-soil and sub-soil layering was simulated, generating an artificial sub-soil medium by mixing two quarry non-commercial by-products, i.e. silt and overburden. These were blended in three ratios (100:0, 70:30, 50:50). Pots were packed to two bulk densities (1.3 and 1.5 g cm-3) and sown with three cover crops used in the early restoration process namely winter rye (Secale cereale), white mustard (Sinapis alba) and a grassland seed mixture (Lolium perenne, Phleum pratense, Poa pratensis, Festuca rubra). Three weeks into growth, the first signs of nitrogen (N) deficiency were observed in mustard plants, with phosphorus (P) and potassium (K) deficiencies observed at 35 days. Rye exhibited minor N deficiency symptoms four weeks into growth, whilst the grassland mixture showed no deficiency symptoms. The 70:30 silt:overburden sub-soil blend resulted in significantly higher Root Mass Densities of grassland seed mixture and rye in the sub-soil layer as compared with the other blends. The innovation in this work is the detailed physical, chemical and biological characterisation of silt:overburden blends and effects on root development of plants commonly used in early restoration to bio-engineer soil structural improvements

    Early-onset primary antibody deficiency resembling common variable immunodeficiency challenges the diagnosis of Wiedeman-Steiner and Roifman syndromes

    Get PDF
    Syndromic primary immunodeficiencies are rare genetic disorders that affect both the immune system and other organ systems. More often, the immune defect is not the major clinical problem and is sometimes only recognized after a diagnosis has been made based on extra-immunological abnormalities. Here, we report two sibling pairs with syndromic primary immunodeficiencies that exceptionally presented with a phenotype resembling early-onset common variable immunodeficiency, while extra-immunological characteristics were not apparent at that time. Additional features not typically associated with common variable immunodeficiency were diagnosed only later, including skeletal and organ anomalies and mild facial dysmorphism. Whole exome sequencing revealed KMT2-Aassociated Wiedemann-Steiner syndrome in one sibling pair and their mother. In the other sibling pair, targeted testing of the known disease gene for Roifman syndrome (RNU4ATAC) provided a definite diagnosis. With this study, we underline the importance of an early-stage and thorough genetic assessment in paediatric patients with a common variable immunodeficiency phenotype, to establish a conclusive diagnosis and guide patient management. In addition, this study extends the mutational and immunophenotypical spectrum of Wiedemann-Steiner and Roifman syndromes and highlights potential directions for future pathophysiological research

    Functional root trait based classification of cover crops to improve soil physical properties

    Get PDF
    Cover crop use is a well-established soil conservation technique and has been proven effective for erosion control and soil remediation in many arable systems. Whereas the obvious protection mechanism of cover crops occurs through the canopy, plant roots perform multiple functions. It is important to consider the soil functions delivered by different root systems in order to increase the uptake of cover crops for sustainable soil and water management. A classification of cover crop root systems up to 0.6 m deep based on functional traits will allow us to better study their potential role in soil bio-engineering; soil structural improvements for hydrological services and soil resource protection. A greenhouse experiment, using large 1 m3 containers filled with loam soil, loose top and compacted subsoil, in which 7 cover crop species (Oat, Rye, Buckwheat, Vetch, Radish, Mustard, Phacelia) were grown for 90 days. Root cores were taken at the end of the experiment, washed and imaged to determine root traits (total root length density, average root diameter, root specific length and root surface area) for both the top and subsoil layers. Root identity was determined from a distinctive combination of single root traits and related to 3 soil functional variables, representing soil structural improvement, runoff mitigation and erosion control. The results showed that total root length and root surface area correlate well with aggregate stability and soil macroporosity. Buckwheat, Mustard and Rye had significantly greater aggregate stability as well as 10, 8 and 7 % greater macroporosity respectively, at the interface with the compacted layer when compared to the control bare soil. Furthermore, average root diameter negatively correlated with soil macroporosity, indicating that cover crop with a fine root system are more beneficial for creating pore-space than those with thicker taproots. Selecting cover crop species with the right root traits is therefore crucial to improve soil health

    Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France

    Get PDF
    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO2 emissions will be crucial to prevent further loss of carbon from our soils

    Selecting plant traits for soil erosion control in grassed waterways under a changing climate: A growth room study

    Get PDF
    Grassed waterways are used to mitigate the offsite transport of sediment generated by soil erosion. This study used a novel trait‐based ranking approach as a method to screen potential candidate grass monocultures and mixes based on their theoretical performance in reducing (1) detachment via rainsplash, (2) detachment via scouring due to concentrated flow and (3) sediment transport and deposition processes. Selected grass species were grown under simulated UK summer and autumn establishment conditions under three different replicated rainfall scenarios: drought, normal rainfall and excess rainfall. The grass species used were the novel hybrid species Festulolium cv Prior (Fest_1), Festulolium Bx511 (Fest_2) and a conventional mixture of Lolium perenne and Festuca rubra (Conv). Monocultures and mixtures of these species were studied. Plant traits pertinent to control of soil erosion by water were measured. Above ground traits included plant height, percentage ground cover, above ground biomass, stem diameter, stem area density and number of tillers. Below ground traits included total root length, root total surface area, below ground biomass, root diameter and % fine roots ≤0.25 mm. For summer conditions, the species treatments which had the highest overall soil erosion mitigation potential were Conv, Fest_1 + 2 + Conv and Fest_2. For autumn conditions, the best treatments were Fest_1 + 2, Fest_1 + 2 + Conv and Conv. The Fest 1 + 2 + conv had more desirable traits for erosion control than mono Festulolium treatments for the autumn conditions. The conventional mixture had more desirable traits for erosion control than mono Festulolium treatments in both climate scenarios. The results indicate that the trait‐based ranking approach utilised in this study can be used to inform rapid screening of candidate grass species for soil erosion control
    corecore