147 research outputs found

    Development of a 'millimanipulation' device to study the removal of soft solid fouling layers from solid substrates and its application to cooked lard deposits

    Get PDF
    A mm-scale scraping device was developed to study the removal behaviour of soft solid fouling layers (thickness 0.5 to 10 mm) from solid substrates. A blade is dragged through the circular or rectangular samples at controlled speed and the resistance forces measured. Tests with a viscous liquid (honey) and viscoplastic material (a Vaseline-carbon black paste) indicated that cohesive deformation dominated the measured force. Two model food soils were: (i) unbaked lard, and (ii) lard baked for different times with and without added ovalbumin. The cohesive strength of the baked lard, and its removal behaviour, changed noticeably following autoxidative polymerisation. Ovalbumin delayed the onset of polymerisation.An EPSRC studentship for AA is gratefully acknowledged, as it project support and a summer studentship for JP from Proctor & Gamble.This is the final version. It was first published by Elsevier at http://www.sciencedirect.com/science/article/pii/S0960308514000972

    A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats

    Get PDF
    We developed a novel integrated technology for diver-operated surveying of shallow marine ecosystems. The HyperDiver system captures rich multifaceted data in each transect: hyperspectral and color imagery, topographic profiles, incident irradiance and water chemistry at a rate of 15-30 m(2) per minute. From surveys in a coral reef following standard diver protocols, we show how the rich optical detail can be leveraged to generate photopigment abundance and benthic composition maps. We applied machine learning techniques, with a minor annotation effort (<2% of pixels), to automatically generate cm-scale benthic habitat maps of high taxonomic resolution and accuracy (93-97%). The ability to efficiently map benthic composition, photopigment densities and rugosity at reef scales is a compelling contribution to modernize reef monitoring. Seafloor-level hyperspectral images can be used for automated mapping, avoiding operator bias in the analysis and deliver the degree of detail necessary for standardized environmental monitoring. The technique can deliver fast, objective and economic reef survey results, making it a valuable tool for coastal managers and reef ecologists. Underwater hyperspectral surveying shares the vantage point of the high spatial and taxonomic resolution restricted to field surveys, with analytical techniques of remote sensing and provides targeted validation for aerial monitoring

    Classifying the biodiversity of the Great Barrier Reef World Heritage Area for the classification phase of the representative areas program

    Get PDF
    This technical report outlines the methods that the Great Barrier Reef Marine Park Authority used to classify the biodiversity of the marine environs of the Great Barrier Reef World Heritage Area for the Representative Areas Program. Classification was the first step in the multiphase Representative Areas Program that eventuated in a new network of no-take areas, free from extractive activities, in the Great Barrier Reef Marine Park

    Phase diagram of calcium at high pressure and high temperature

    Get PDF
    Resistively heated diamond-anvil cells have been used together with synchrotron x-ray diffraction to investigate the phase diagram of calcium up to 50 GPa and 800 K. The phase boundaries between the Ca-I (fcc), Ca-II (bcc), and Ca-III (simple cubic, sc) phases have been determined at these pressure-temperature conditions, and the ambient temperature equation of state has been generated. The equation of state parameters at ambient temperature have been determined from the experimental compression curve of the observed phases by using third-order Birch-Murnaghan and Vinet equations. A thermal equation of state was also determined for Ca-I and Ca-II by combining the room-temperature Birch-Murnaghan equation of state with a Berman-type thermal expansion model.Part of the research was supported by the Spanish Government MINECO under Grants No. MAT2016-75586-C4-1/4P and No. MAT2015-71070-REDC.Peer reviewe

    A Global Meta-Analysis of Forest Bioenergy Greenhouse Gas Emission Accounting Studies

    Get PDF
    The potential greenhouse gas benefits of displacing fossil energy with biofuels are driving policy development in the absence of complete information. The potential carbon neutrality of forest biomass is a source of considerable scientific debate because of the complexity of dynamic forest ecosystems, varied feedstock types, and multiple energy production pathways. The lack of scientific consensus leaves decision makers struggling with contradicting technical advice. Analyzing previously published studies, our goal was to identify and prioritize those attributes of bioenergy greenhouse gas (GHG) emissions analysis that are most influential on length of carbon payback period. We investigated outcomes of 59 previously published forest biomass greenhouse gas emissions research studies published between 1991 and 2014. We identified attributes for each study and classified study cases by attributes. Using classification and regression tree analysis, we identified those attributes that are strong predictors of carbon payback period (e.g. the time required by the forest to recover through sequestration the carbon dioxide from biomass combusted for energy). The inclusion of wildfire dynamics proved to be the most influential in determining carbon payback period length compared to other factors such as feedstock type, baseline choice, and the incorporation of leakage calculations. Additionally, we demonstrate that evaluation criteria consistency is required to facilitate equitable comparison between projects. For carbon payback period calculations to provide operational insights to decision makers, future research should focus on creating common accounting principles for the most influential fac

    Disturbance and the Dynamics of Coral Cover on the Great Barrier Reef (1995–2009)

    Get PDF
    Coral reef ecosystems worldwide are under pressure from chronic and acute stressors that threaten their continued existence. Most obvious among changes to reefs is loss of hard coral cover, but a precise multi-scale estimate of coral cover dynamics for the Great Barrier Reef (GBR) is currently lacking. Monitoring data collected annually from fixed sites at 47 reefs across 1300 km of the GBR indicate that overall regional coral cover was stable (averaging 29% and ranging from 23% to 33% cover across years) with no net decline between 1995 and 2009. Subregional trends (10–100 km) in hard coral were diverse with some being very dynamic and others changing little. Coral cover increased in six subregions and decreased in seven subregions. Persistent decline of corals occurred in one subregion for hard coral and Acroporidae and in four subregions in non-Acroporidae families. Change in Acroporidae accounted for 68% of change in hard coral. Crown-of-thorns starfish (Acanthaster planci) outbreaks and storm damage were responsible for more coral loss during this period than either bleaching or disease despite two mass bleaching events and an increase in the incidence of coral disease. While the limited data for the GBR prior to the 1980's suggests that coral cover was higher than in our survey, we found no evidence of consistent, system-wide decline in coral cover since 1995. Instead, fluctuations in coral cover at subregional scales (10–100 km), driven mostly by changes in fast-growing Acroporidae, occurred as a result of localized disturbance events and subsequent recovery

    Bayesian Classification and Regression Trees for Predicting Incidence of Cryptosporidiosis

    Get PDF
    Background Classification and regression tree (CART) models are tree-based exploratory data analysis methods which have been shown to be very useful in identifying and estimating complex hierarchical relationships in ecological and medical contexts. In this paper, a Bayesian CART model is described and applied to the problem of modelling the cryptosporidiosis infection in Queensland, Australia. Methodology/Principal Findings We compared the results of a Bayesian CART model with those obtained using a Bayesian spatial conditional autoregressive (CAR) model. Overall, the analyses indicated that the nature and magnitude of the effect estimates were similar for the two methods in this study, but the CART model more easily accommodated higher order interaction effects. Conclusions/Significance A Bayesian CART model for identification and estimation of the spatial distribution of disease risk is useful in monitoring and assessment of infectious diseases prevention and control

    Mining social mixing patterns for infectious disease models based on a two-day population survey in Belgium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until recently, mathematical models of person to person infectious diseases transmission had to make assumptions on transmissions enabled by personal contacts by estimating the so-called WAIFW-matrix. In order to better inform such estimates, a population based contact survey has been carried out in Belgium over the period March-May 2006. In contrast to other European surveys conducted simultaneously, each respondent recorded contacts over two days. Special attention was given to holiday periods, and respondents with large numbers of professional contacts.</p> <p>Methods</p> <p>Participants kept a paper diary with information on their contacts over two different days. A contact was defined as a two-way conversation of at least three words in each others proximity. The contact information included the age of the contact, gender, location, duration, frequency, and whether or not touching was involved.</p> <p>For data analysis, we used association rules and classification trees. Weighted generalized estimating equations were used to analyze contact frequency while accounting for the correlation between contacts reported on the two different days.</p> <p>A contact surface, expressing the average number of contacts between persons of different ages was obtained by a bivariate smoothing approach and the relation to the so-called next-generation matrix was established.</p> <p>Results</p> <p>People mostly mixed with people of similar age, or with their offspring, their parents and their grandparents. By imputing professional contacts, the average number of daily contacts increased from 11.84 to 15.70. The number of reported contacts depended heavily on the household size, class size for children and number of professional contacts for adults. Adults living with children had on average 2 daily contacts more than adults living without children. In the holiday period, the daily contact frequency for children and adolescents decreased with about 19% while a similar observation is made for adults in the weekend. These findings can be used to estimate the impact of school closure.</p> <p>Conclusion</p> <p>We conducted a diary based contact survey in Belgium to gain insights in social interactions relevant to the spread of infectious diseases. The resulting contact patterns are useful to improve estimating crucial parameters for infectious disease transmission models.</p

    On plexus representation of dissimilarities

    Get PDF
    Correspondence analysis has found widespread application in analysing vegetation gradients. However, it is not clear how it is robust to situations where structures other than a simple gradient exist. The introduction of instrumental variables in canonical correspondence analysis does not avoid these difficulties. In this paper I propose to examine some simple methods based on the notion of the plexus (sensu McIntosh) where graphs or networks are used to display some of the structure of the data so that an informed choice of models is possible. I showthat two different classes of plexus model are available. These classes are distinguished by the use in one case of a global Euclidean model to obtain well-separated pair decomposition (WSPD) of a set of points which implicitly involves all dissimilarities, while in the other a Riemannian view is taken and emphasis is placed locally, i.e., on small dissimilarities. I showan example of each of these classes applied to vegetation data
    corecore