
Introduction

Both correspondence analysis (CA) and canonical

correspondence analysis (cf. ter Braak 1986) have proved

extremely popular as means of analysing vegetation data

and with Yanai (1988) and Escofier et al. (1990) develop-

ing extensions to correct for spatial correlation, their us-

age is likely to grow further. Birks et al.’s (1994) bibli-

ography records 379 entries and, being geographically

biased, underestimates the total.

Recently, incorrect specification of convergence tol-

erances in a specific widely-used computer program was

identified by Oksanen and Minchin (1997), as a cause of

data-order dependence in the results
�
. Such dependence is

not unique to correspondence analysis, and the algo-

rithmic fault is easily remedied, but the discovery pro-

vides food for thought. A similar, earlier recognition

(Beals 1973) that all was not well with ordination proce-

dures in vegetation studies led to the development of new

methods and ultimately to the spread of CA and various

related methods of Gaussian ordination (cf. Hill 1973,

Ihm and van Groenewoud 1975, Goodall and Johnson

1982, 1987). It was also one (distal) cause for my distin-

guishing two major objectives for ordination, dimension-

ality reduction and gradient seeking (Dale 1975). How

many other problems are users likely to find in these or-

dination procedures?

Before examining the potential for problems, I should

make it clear that my objective is not to denigrate CA and

similar methods. It is rather to suggest that other, possibly

simpler, methods might be useful in indicating if any

problems are likely to occur. Some modifications and al-

ternatives have already been studied. Famili and Turney

(1991) and Fayyad et al. (1996) suggested preprocessing

techniques for improving CA and there have been sugges-

tions that other methods provide better recovery of gradi-

ent structure with fewer assumptions. Such methods in-

clude non-metric multidimensional scaling (Minchin

1987), principal curves (De’ath, 1999) and appropriately

standardised Principal Components (Karad�iæ and Pop-

oviæ 1994)).

In this paper I propose to examine some procedures

for providing visual assessment using what are variously
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termed graphs, hypergraphs, networks or plexuses. How-

ever, I shall not be concerned with the problems of auto-

matically drawing such networks; for material on this see

Tamassia and Tollis (1995). For special cases, such as pla-

nar graphs and trees, effective algorithms are available

but the general case is very difficult.

Potential problems with correspondence analysis

We can distinguish at least four classes of potential

problems, none of which are restricted to correspon-

dence analysis:

• interpretational problems;

• algorithmic problems;

• user choices; and

• incorrect assumptions.

Interpretational problems

These arise when the nature of the result is misinter-

preted by the user. A simple example is shown in Fig. 1

where the principal axes of a rectangular shape are indi-

cated. Since they are chosen to maximise variation, the

axes do NOT bear a simple relation to the rectangular

shell, running diagonally rather than parallel to the

‘sides’. Another common case is where the samples form

two or more discrete clusters (see e.g., Duckworth et al.

2000), when the result is likely to compromise between

intra- and inter- cluster structure. For this class of prob-

lems, the solution requires only education of users.

Algorithmic problems

Users of particular computer programs should be

wary of possible flaws in the algorithms implemented.

Projection pursuit methodology, which provides another

interesting class of ordinations, has only recently become

viable with the development of appropriate and effective

algorithms (Posse 1995). It seems that almost all the early

studies were decidedly suboptimal and sometimes totally

erroneous! This is certainly not the case for CA but some

problems might still appear.

Sequential extraction of axes. The eigenanalysis which

underlies CA is commonly made using the reciprocal av-

eraging algorithm, which identifies axes sequentially,

starting with the axis with largest eigenvalue, which is ob-

viously faster. But there is a slight risk, (I have had it hap-

pen!) that the initialisation approximation is closer to

some vector other than those which interest us and then

we may not obtain the axes we are seeking, instead con-

verging to the nearer axis.

Coarse data. CA was designed for use with binary and

frequency data whereas ecologists commonly use coarse,

ordered category variables such as cover-abundance

scales. The possible effects of this are simply neglected.

Such neglect may be benign but I do not believe it should

be ignored. Naouri (1970) has considered quantitative CA

so a comparison of numeric and ordered category data

should be possible.

Robustness. Robustness is primarily concerned with the

effects of outliers or other information with a high lever-

age. We might expect to use algorithmic procedures

which protect us against such effects such as that of

Gabriel and Odoroff (1984), rather than relying on noto-

riously non-robust least squares methodology. A note of

caution is necessary, though, for Naga and Antille (1990)

showed that robust axes were not necessarily more effec-

tive in recovering known axes in Principal Component

Analysis.

Resistance. Resistance is concerned with the effects of

missing values which are normally not of great concern

with vegetation data but are possibly more common with

associated environmental data. There is, however, a well

known logical dependency between presence and abun-

dance; you do not know how much something is absent.

One technique for treating such dependency is to partition

the data into binary ‘presence/ absence’ and numeric

‘abundance when present’ categories with absences re-

garded as ‘missing values’ in the numeric category. So-

lutions are offered by Gabriel et al. (1988). Data can also

be partially available, censored, ambiguous or erroneous

as well as actually missing or inapplicable (Babad and

Hoffer 1984).

User choices

Most analytic methods involve the user in making

choices and CA is no exception. The problems arise when

default values are adopted without due consideration.
Figure 1. Principal axes of a cuboid.
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Rarity. If a species occurs only in a single stand with no

other species present, then we would expect an eigenvalue

of unity. In fact, this is rarely seen in analyses because

down-weighting of rare species is common practice (see

Eilertson et al. 1989). Whether such down-weighting is

entirely justified is another matter. I would suggest that it

would be desirable to know of the existence of such axes

before totally discarding them. The first CA I ever at-

tempted, studying relationships between Lepidoptera and

their host plants, commenced with 11 unit eigenvalues!

The number of axes. Van Groenewoud’s (1992) empirical

study reported that CA and its detrended offspring were

both very bad at recovering any axis except the first. In-

deed, examining the literature, it is rare for a sensible sec-

ond axis to be reported, and not uncommon for a diagonal

axis to be apparent in point plots. This finding is the more

interesting because of the recent demonstration by Hubert

and Arabie (1992) that ANY pair of axes in a CA can be

replaced by a single, different, axis. They argue from this

that the size of the eigenvalues is NOT a good measure of

whether more than one axis is necessary. Even if we argue

that a 2-dimensional solution is necessary because we

have bivariate Gaussian responses for each species, to ex-

pect that the recovered axes will conveniently reflect the

bivariate nature is to hugely constrain the solution. I doubt

that realised niches are so conveniently spaced in an en-

vironmental universe that their projections will conform.

Indeed if they did, it would be of enormous significance.

For linear factor analysis, methods have been proposed

for determining the appropriate number of factors (Wal-

lace 1995), but these have not so far been extended to

other ordination methods.

Incorrect assumptions

The gradient model may not in fact be the best choice;

for example I have one set of data which fits a trivariate

normal distribution very well. Simply because we have

sampled along what appears visually to be a gradient is no

guarantee that there is but one simple gradient present or

indeed any gradient at all! The gradient we are investigat-

ing is a vegetation gradient and this need not correspond

to any environmental gradient since it may be self-gener-

ated.

With disjoint data the order of the stands and species

cannot be uniquely recovered. It is also possible for 2 or

more gradients to be appended into a single axis. This is

illustrated in Fig. 2 where, because wet serpentine is simi-

lar to dry granite, it is possible to arrange the stands on a

single gradient. We then lose any relationship with mois-

ture unless we happen to include appropriate interaction

terms. Of course we can have much more substantial de-

partures from a single gradient than this simple case of

abutment. The introduction of instrumental variables in

canonical correspondence analysis does not, of itself, al-

leviate the problem and introduces the difficulties of

choosing an appropriate regression function.

Response function. CA presumes a specific form of re-

sponse function with equally spaced identical bell-shaped

curves. Empirically this does not seem realistic (see

Austin 1990) and alternatives have been proposed (see

e.g., Austin 1976, Huisman et al. 1993).

Global and local solutions. One feature of using eigen-

value techniques for identifying gradients often over-

looked is the global nature of the solution. What this

means is that, no matter how long the gradient, the stands

and species at one end still influence the positioning of

those at the other. It is not clear that this is a desirable

feature, especially for a long gradient. It is certainly true

that dissimilarities will be best estimated between near

neighbours, and that disjunct samples will have very

badly estimated dissimilarities. The obvious solution is to

emphasise local information and this is the approach

adopted in principal curves. De’Ath (1999) has shown the

effectiveness of such analyses, but even here it is common

to use relatively long sections of the sequence, say 1/4 of

its total length, in the smoothing procedure. Still greater

emphasis on small dissimilarities may be desirable.

Environmental relationships. If we knew of the existence

of nonlinearities, serial dependencies and interactions in

the relationship between vegetation and environmental

factors, then we could construct an appropriate regression

model. But how do we know this especially if we are con-

ducting an exploratory analysis? Methods such as linked

vector plots (Taguri et al. 1976) analysis might suggest

that a relationship exists for only part of the data, say only

Figure 2. A ‘horseshoe’ confounding interpretation. Re-

drawn from a Principal Components Analysis of some Zim-

babwean data.
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the upper or lower ranks of the stand series while quite

different relationships exist elsewhere in the data.

It can be seen from the above that in many cases ap-

propriate solutions to these problems are known even if

rarely used. However, I would argue that it is desirable to

investigate simple methods for confirming the existence

of a gradient as opposed to other structures, before apply-

ing correspondence analysis. At present formal compari-

son of models is difficult.

Plexus procedures

Aristotle is credited with the remark that “in order to

think, we must speculate in images”. While I might dis-

agree with this as a universal rule, it is true that very often

we need to present graphs derived by mathematical analy-

sis in a visually effective manner. Very few ecologists

would, I feel, be attracted to the use of formal languages

as suggested by Culik and Maurer (1978) although these

might have considerable advantages in describing devel-

opmental sequences.

Given a complete dissimilarity matrix, we seek some

method of effectively portraying its structure to identify

departures from a simple gradient situation. If possible the

technique applied should be robust and rapid as befits an

exploratory method. Keil and Gutwin (1992) have dis-

cussed some approximating graphs and related work is

presented by Klauer (1989) and Orth (1988) but here I

shall concentrate on “plexus” methods.

McIntosh (1973) surveyed a number of techniques

which he termed “plexus methods” but which are mathe-

matically graph representations. In fact the idea had been

used much earlier, especially in Russia. For example, Va-

silevich (1967) used a graph representation as a mecha-

nism for clustering stands, while de Vries (1953) clus-

tered species. Essentially these methods use plexus

representations (graphs or networks) to display dissimi-

larity (or correlational) relationships between stands or

between property descriptors, both species and environ-

mental variables. I shall for convenience refer to stands

throughout, in which case the procedure is as follows.

1 Calculate for all pairs of stands some measure of dis-

similarity. This gives a complete graph with every

stand connected to every other.

2. Select a subset of the linkages between stands

3. Use this subset as a basis for drawing a network rep-

resentation of the whole matrix of values.

4. We may further wish to examine inter-relationships

between several plexus representations; for exam-

ple, Barkman (1965) gives a separate plexus for

each of vascular plants, mosses, lichens and algae,

higher fungi and Carabid beetles and relationships

between these would clearly be of some interest.

One possibility is to combine the graphs and de-

velop a hypergraph representation (Godehardt and

Herrmann 1988) but there are also formal methods

though they will not be discussed further here.

There are obviously three sets of problems here.

• We must construct a dissimilarity measure appropri-

ate to the problem and to the data description.

• We must identify the interesting subset of dissimi-

larities which should be represented; i.e., we estab-

lish those pairs of stands which are regarded as

“linked” in the plexus diagram.

• We must actually draw the network, preferably in a

way which represents both the presence of the link-

age in the subset and its magnitude.

This is not the place for an extended discussion on the

nature of dissimilarity and its measurement. My primary

concern is with the selection of the set of dissimilarities to

be represented and a wide range of possibilities exists. In

some circumstances, the selection can be imposed using

external criteria, which provides an analogue of analysis

of variance when coupled with various data-based signifi-

cance testing procedures (see e.g., de Vries et al. 1954,

and Gimingham 1961). More often we must rely on inter-

nal criteria to establish the set of linkages to be displayed.

Which set depends on the objectives of the analysis.

Expectations and objectives

If our stands are indeed ordered along a gradient, then

we might expect low dissimilarity between adjacent

stands. Indeed, if the assumptions of CA were fully met

the minimal spanning tree (hereafter MST) would simply

be a linear, unbranched sequence! We might even use the

largest eigenvalue of the incidence matrix (which is the

binary matrix showing the existence of edges between

stands) as a measure of the degree to which the data do

NOT meet the assumptions (cf. Murtagh 1983).

In any case, if we select the set of small dissimilarities

and draw the associated graph we should see most stands

linked to their neighbours in the gradient sequence. This

suggests that approaches concentrating on small dissimi-

larities should be most appropriate and indicates that such

methods as determining maximal spanning trees (Agar-

wal et al. 1992) or most or least uniform trees (Camerini

et al. 1986) are unlikely to be helpful, whereas min-max

46 Dale



trees (Camerini 1978) which minimise the single maxi-

mum value might be valuable as an alternative to the

MST. I shall concentrate here on very simple procedures

using the dissimilarity values, but there are other possi-

bilities, such as using angles formed by successive triple

of stands in the presumed gradient (see Eppstein 1992 and

Keil and Gutwin 1992).

However, we might also ask that selected subsets ade-

quately represent the entire dissimilarity matrix instead of

concentrating only on local conditions. For environ-

mental variables it may be true that even large dissimilar-

ity values can be regarded as well-estimated and that the

information they supply should be used to develop the

representation. Thus, just as noted earlier for ordination

(Dale 1975), there are two different classes of plexus

model available. These are distinguished by the use in one

case of a global Euclidean model to obtain well-separated

pair decomposition (WSPD) of a set of points which im-

plicitly involves all dissimilarities, while in the other case

a Riemannian view is taken and emphasis is placed lo-

cally on small dissimilarities. In the present paper I shall

look at both possibilities, since they are not necessarily

mutually exclusive.

Concentration on small dissimilarities is also a char-

acteristic of correlation. To say that two variables are

(positively) correlated implies that samples which have

values which are “close” with respect to one variable are

more likely than chance to have values which are “close”

with respect to the second variable. (Friedman and Rafsky

1979, 1983, Critchlow 1985). However, correlation does

NOT require that samples which are “distant” with re-

spect to one variable are more likely than chance to have

values which are “distant” with respect to the second vari-

able. All the standard coefficients of correlation conform

to this definition.

Euclidean or global approach

The Euclidean approach involves a global approxima-

tion. Let d�� be the original dissimilarity and let a�� be the

approximation obtained from our selected subset. This

approximation is made by calculating the shortest path

between i and j using only links which are included in the

selected subset. We seek to make the selection so as to

minimise some function relating d�� and a��. Various crite-

ria can be used to assess the relationship between d�� and

a��. Three such are
�
:

• Σ Σ f(|d�� - a��|) leading to least squares or similar cri-

teria, such as is used in metric scaling. Least Squares

is also used by de Soete (1988) when fitting additive

trees.

• Maximise τ(d��,a��) where τ is some measure of rank

correlation such as is used in nonmetric scaling.

• t*d�� = a�� where t is some selected multiplier and we

are asking that no individual dissimilarity is ex-

tremely distorted.

SplitsTree. In the present paper I shall examine two meth-

ods only. One is a generalisation of additive or Steiner

trees due to Dress et al. (1996; see also Bandelt and Dress

1992) called “SplitsTree”. A tree is simply a graph such

that all stands form leaves and are connected by some path

but without loops. An additive tree (also known as a Ste-

iner tree) adjusts the lengths of the edges in a tree so that

the shortest path-length between any 2 leaves provides

give a good approximation to the original dissimilarity

between that pair of items. “Splits-Tree” further general-

ises the additive tree to form a graph where this seems

desirable; i.e., extra linkages may be added to a tree struc-

ture which necessarily form loops if this allows the ap-

proximation of dissimilarities to be improved. The ration-

ale is as follows:

In any tree if any link is broken, then two subsets of

the nodes are formed. If we break a link A we obtain sets

A
�

and A
�
. Similarly if we break the tree using link B we

get sets B
�

and B
�
. Now if we examine the intersection

sets formed by (A
� ↔ B

�
), (A

� ↔ B
�

), (A
� ↔ B

�
) and

(A
� ↔ B

�
) we find that one of these sets is empty. This is,

in fact, a sufficient characterisation of a tree.

What “SplitsTree” does is to relax this condition and

replace it with some other, weaker, conditions. For exam-

ple, we might demand only that the intersections of one of

the triples, such as (A
� ↔ B

� ↔ C
�
) need be empty. This

permits some parts of the representation to diverge from

a tree form.

Spanners. The second method, due to Althöfer et al.

(1993), uses the third criterion given above, based on a

threshold or stretch value t. This determines tolerable er-

rors in the following way. Any observed dissimilarity, d��

whose approximation in the graph has a length exceeding

(d x stretch) will cause a new edge to be inserted in the

graph between nodes i and j. Thus, for the final graph we

can say that no observed dissimilarity d is represented by

a path which is longer than (stretch x d). Obviously small
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values of stretch result in a closer approximation to the

dissimilarities, at the expense of an increase in the number

of edges in the graph.

Cai (1994) has shown the NP-completeness of finding

the minimum such spanner, but the approximations seem

quite good. One algorithm for computing an approxima-

tion to this is a simple modification of a MST algorithm.

The dissimilarities are first sorted into ascending order.

Starting from the smallest, a link between i and j is entered

in the approximating graph if the dissimilarity calculated

by tracing a path through the extant links in that graph

exceeds the original dissimilarity by the threshold i.e.,

t*d�� = a��, or equivalently t = a��/d��.

Riemannian or local approach

The Riemannian approach (cf. Dale 1994) differs

from the Euclidean in that it is not concerned with overall

global approximation at all. Instead it concentrates on

small dissimilarity values, and seeks to identify a set of

neighbours for each stand. Links between near neigh-

bours form the basis of the graph. Note that this emphasis

on neighbours will avoid many of the problems associated

with bad estimation of dissimilarities due to absence of

species.

d-neighbours and k-neighbours. The problem is to select

a suitable set of neighbours, and there are many ways in

which this might be done. One obvious method is simply

to choose a threshold and accept all edges associated with

dissimilarities which are less than this value; this defines

d-neighbours. In some cases we might use a significance

test to establish the critical value. For cases where this is

not possible, Deichsel (1980) suggested a procedure for

identifying a suitable threshold value.

A second approach makes use of nearest neighbour re-

lationships. Williams (1980) suggested using 2-neigh-

bours and found this useful, although later extending this

to many neighbours; this defines k-neighbours. Simply

using the k nearest neighbours can often lead to a discon-

nected graph; i.e., it is impossible to get from some stand

to some other through graph links. Using only the nearest

neighbours, for example, such disconnection will occur

whenever two stands are mutually nearest neighbours.

Trees and tesselations. To overcome this disconnection,

it is common to employ the MST, which is simply the

shortest tree which connects all stands - and of course a

nearest neighbour classification as well. An early expo-

nent was Falinski (1960). The MST contains only n-1

edges which is perhaps somewhat sparse for our present

purposes and several generalisations have been proposed,

the Relative Neighbourhood graph (Toussaint 1980) and

the Gabriel graph (Gabriel and Sokal 1969). In fact all of

these are subgraphs of the Delaunay or Dirichlet tessella-

tion (see Aurenhammer 1991), and these (and more) are

themselves subgraphs of the γ-graph (Veltkamp 1992).

The Delaunay tessellation solves a problem raised by

O’Callaghan (1974) who required that neighbours did not

obscure each other. Ash and Bolker (1986) have further

generalised the Delaunay tessellation, incorporating vari-

ous weightings dependent on the nature of the interactions

and the simultaneous or successive incorporation of

stands into the system, while Levcopoulos and Lingas

(1989, see also Vaidya 1991) have found that there are

other planar graphs which can well approximate observed

values, yet are not much more complex than the MST.

The stands linked in such a tessellation are termed

“natural neighbours” and possess a variety of optimality

properties. Somewhat surprisingly, Dobkin et al. (1990)

have shown that this tessellation, although based on local

neighbourhoods, is also a good approximation to the com-

plete graph and hence is, in a sense, a global solution as

well. The major problem with using this tessellation is

that the computational cost increases rapidly with dimen-

sionality (but see Vaidya 1991 for some possibilities), and

this is true of the many other tessellations in the literature.

For the purposes of this paper I have therefore examined

only k-neighbours.

Multiple MST’s. Generalisation of the MST is the most

obvious way in which to reduce the sparseness of its sam-

pling of edges. There is, however, another method deriv-

ing from the MST which was suggested by Friedman and

Rafsky (1979) precisely for the purpose of sampling the

small dissimilarities. If we extract a MST using a given

dissimilarity matrix, all those links which appear in the

tree can have their values in the original matrix replaced

by infinities. We can now extract a second MST orthogo-

nal to the first in the sense that no linkage can appear in

both. We can now set links for the second tree to infinite

values and extract a third tree, and so on for (n-1) trees.

The first few such trees will effectively sample all the

small dissimilarity values, although we might wish to in-

crease the number of orthogonal trees as the number of

stands grows larger.

Before concluding this description of procedures one

other must be briefly noted they was used in examining

the exemplary data. Williams et al. (1991) described a

simple procedure for approximately ordering a sequence

of species when the sequence of stands was already

known. This is based on a ranking model, but it does per-

mit the identification of two anomalous cases, where the

species are bimodally distributed (i.e., occur at both ends
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of a “gradient” but not in the centre) or alternatively are

very common and hence, of necessity, placed centrally.

Data and analyses

To illustrate the procedures I shall make use of data

collected by Dr. L. Mucina. It reports floristic descrip-

tions of 22 stands of chalk grassland in Slovakia, with 46

species present in total. It was believed to represent a gra-

dient and was ordered appropriately; such belief may well

be based on extra-floristic information unavailable to me.

However, I have accepted that the stands are arranged in

a suitable order, but suspected that the species were not

well arranged.

The data were examined using both Euclidean and

Riemannian plexus methods, specifically a spanning

graph approximation of the dissimilarity matrix, the

“SplitsTree” procedure, multiple MSTs and multiple

neighbour graphs.

The dissimilarity measure used was Williams (1973)

partitioned information coefficient for frequency data,

which unites qualitative and quantitative differences be-

tween stands. Assume that each sampling unit has been

subdivided into N subunits and that we are considering a

group of g such units, in s of which a species k occurs. Let

the total number of subunits in which the species occurs

be a of the available gN. The likelihood for species k is

then given by

L���= (s/g)
��

((g-s)/g)
�����	

(a/Ns)
�

(Ns-a)/Ns)
����

which can be converted to an information measure

I� = N[g lg (g) - s lg (s) - (g - s) lg (g - s)] +

[Ns lg (Ns) - a lg (a) - (Ns - a) lg (Ns - a)]

where lg(x) is some convenient logarithmic function usu-

ally to base 2 or base e. We can sum over species to obtain

a measure of homogeneity with the group of g units and

then use the change in information consequent on fusing

two such groups to represent the dissimilarity between

them.

From this, it can be seen that the first part of the right-

hand side is concerned solely with the presence of the spe-

cies in the units, while the second part is concerned with

its abundance within subunits. With ordered category

data, such as cover-abundance codes we simply take the

highest code value to be the number of subunits per unit.

In all cases it seems likely that some desirable proper-

ties might be emphasised by appropriate choice of matrix-

iterative calculations in the manner of Kendall (1971). It

is, for example, possible to ensure that the dissimilarity

matrix is Euclidean or to emphasise serial structure. These

techniques were not applied in this first examination

Results

Table 1 shows the presence/absence form of the data

after the species have been re-ordered according to the

Williams et al. (1991) procedure. The rank order relation-

ship between Mucina’s original ordering and the re-or-

dered species list is highly significant (τ� = 0.58,

p<<0.001), although perhaps less high than we might

have hoped for.

If we examine the relationship between original and

constructed ordering, shown in Fig. 3, there are two areas

of difference. At the start of the sequence some species are

moved to unexpected positions, notably species 9 to 15 of

the Mucina ordering which are moved to the start of the

w-b-c sequence. At the end of the sequence there seems

to be a confusion, or even an absence, of the ordering.

These differences suggest that there may have been some

slight misordering of the stands at the start and that the

end of the sequence is not part of any sequence. Rare spe-

cies are the commonest aberrant form, although ubiqui-

tous and bimodal distributions are both present. One spe-

cies, Tithymalus cyparissias, might be regarded as

bimodal or ubiquitous depending on the precise decision

criteria - w-b-c used a minimal separation of five steps

along the gradient as sufficient to infer bimodality, but

this number was arbitrarily chosen.

Spanning graphs for the stands were constructed for a

variety of stretch values, ranging from 2 to 5 and a few are

shown in Fig. 4. A simple graph is obtained with value of

5 (Fig 4a) and 3 (Fig 4b). Further trials suggested that a

Figure 3. Comparison of Mucina and Williams-Bunt-Clay

ordering of species along the presumed stand gradient.
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value of 2.75 was at or about the position where a simple

graph first appeared and such a graph is shown in Fig. 4c.

It can be seen to be planar (no lines cross) and appears to

be composed of 3 major clusters. Examining this and the

other simple graphs does suggest that there is an initial

sequence but that the later stands are much less clearly

aligned in order. Even with a stretch value of 5, which is

a very liberal tolerance, stands 13-20 do not form any-

thing akin to a simple sequence. In contrast, with a value

of 2 a rather complex graph is formed; Fig. 4d, based on

the Hamiltonian cycle, gives a reasonably clear repre-

sentation of a complex structure.

The “SplitsTree” results appear to confirm this inter-

pretation. In Fig. 5 in order to reduce overwriting of la-

bels, the graph is drawn with all links of equal length; i.e.,

without regard for the actual dissimilarity values associ-

ated with the links. It is clear that the early stages of the

sequence (stands 1-9) are not in a simple sequence, but

this pales into insignificance compared with intermediate

stands 10-13 and still more the later stands 14-22! Both

these groups come closer to clusters than sequences. This

explanation would be more convincing if the graph were

a better fit to the data; the additive tree accounts for some

16% of the variation, and the SplitsTree graph for around

Table 1. Mucina Data re-ordered according to the Williams-Bunt-Clay criterion. Bold indicates probable ubiquitous spe-

cies. Italic indicates probable bimodal species. Bold italic indicates rare species which have an uncertain position.

1 = present, . = absent.
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28%, though note the improvement in fit as we move

away from a tree.

When we draw the links to scale (Fig. 6) the result is

a clear separation into 2 clusters, neither of which is par-

ticularly associated with any simple sequence. The global

methods are of course dominated by the larger dissimilar-

ity values which makes the apparent lack of fit of some-

what less important since these are the most likely values

to be ill-estimated. In summary, the global methods seem

to suggest that the early part of the sequence is acceptable

but that the later stands do not fall into a simple linear se-

quence.

Turning to local methods, three orthogonal MSTs

were extracted, and these are presented in Fig. 7. Overall,

in Fig. 7a there does seem to be a reasonable approxima-

tion to a gradient interpretation, although the first tree

shows a less than perfect sequence for the later stands.

Obviously the MST will not provide a good fit globally

(it is known that nearest neighbour clustering is usually

more distorting than furthest neighbour for example; see

Hubert and Schultz 1975) and might be expected to em-

Figure 4. Spanning Graphs of

the Mucina data at various

thresholds, showing increased

complexity as the threshold de-

creases. a. Threshold t = 5. b.

Threshold t = 3. c. Threshold t =

2.75 spanning graph for Mucina

data; edges not drawn to scale.

d. Threshold t = 2 redrawn us-

ing the Hamiltonian Cycle to

define a circular basis.

a

b c

d
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phasise any serial structure, for a common problem with

this method concerns “chaining” (e.g., Wishart 1969 spe-

cifically designed a method to reduce such effects). How-

ever looking at Fig. 7b immediately suggests that 2 clus-

ters are present with a common connection through stand

13. The graph does not seem to be planar although I have

not submitted it to a formal test of planarity.

Turning to multiple neighbours the graph resulting

from examining the 3 nearest neighbours is shown in Fig.

8. The major disjunction into two clusters is obvious and

there appears to be another possible disjunction between

stands 7 and (9, 12). As usual the earlier stands can be

regarded as a somewhat malleable gradient, but this inter-

pretation does not seem to be acceptable for the later

stands.

Discussion

Reliance on dissimilarities

CA and its derivatives directly employ the observed

performance values for species in stands, whereas the

plexus methods used here are based on dissimilarities be-

tween stands. How much do we lose by changing from

Figure 5. “SplitsTree” graph for Mucina data; edges not to

scale.

Figure 6. “SplitsTree” graph for Mucina data; edges to

scale.

Figure 7. Multiple Or-

thogonal Minimal Span-

ning Trees for the

Mucina data. a. the sepa-

rate trees, b. the compos-

ite graph.

a

b
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2-mode data on stands and species to 1-mode involving

only dissimilarities? Maa et al. (1996) have shown that

dissimilarities are quite powerful in analogues of analysis

of variance, which suggests that not much information is

actually being lost. Additionally the ability to choose a

dissimilarity measure allows the user to emphasise or de-

emphasise various aspects of the relationships between

stands. The question is similar to that of selecting a par-

ticular performance measure, such as projected cover,

density or biomass, in that each particular measure will

have advantages and disadvantages. Indeed the chi-

square distance which underlies CA may not be a particu-

larly useful measure of the relationships which we wish

to examine.

Gradients: for and against

While the data set shows some signs that a gradient

might exist in some sections, this is not a clear indication,

even when the original author has accepted a sequential

structure as appropriate. Any gradient present seems to be

one involving clusters of stands rather than individual

stands and I suggest the data more strongly support sepa-

ration into at least 2 clusters, one of which might inter-

nally be sequentially arranged.

One supposed advantage of CA is that each species is

assigned a location and spread along the presumed gradi-

ent. The strict model is even stronger in that only the lo-

cation of the curves differs, spread and spacing being

equal. The results obtained here suggest that these values

are not a great deal of use, since the sequential bell-shaped

curve response model is unlikely to be apposite. How-

ever, nonmetric scaling is less likely to be affected and

can cope with the implied higher dimensionality.

This leaves the question of when a gradient model

might be chosen in preference to any other. It is clear that

the choice will be scale dependent - the smoothing effect

of using larger sampling areas will smooth local disconti-

nuities. A referee has (correctly) suggested that “the

choice should depend on the ability of the method to cap-

ture and summarise reality concisely” and not on any pre-

conception that vegetation is continuous or formed from

disjoint classes. Apart from some philosophical problems

with ‘reality’ - I would prefer to substitute ‘observed data’

- this is true but it avoids the question of how this might

be done! There is a distinct lack of methods for making

such evaluation and so far as I am aware no phytosoci-

ological applications. Good fit is not sufficient by itself,

for a more complex model can always fit data better. It is

necessary to balance the complexity of the model against

its adequacy of fit, as is done in the minimal message

length proposals of Allison and Wallace (1994), Edgoose

and Allison (1999) and Wallace and Dowe (2000).

Euclidean or Riemannian

Both Euclidean (global) and Riemannian (local) ap-

proaches seem to be effective. However, unless users are

prepared to define the structure which they wish to fit and

adopt Hubert and Arabie’s (1994) methodology, the sin-

gle best representation would appear to be the multiple

neighbour graph. This could well be a salutary experience

for those who unthinkingly have adopted a gradient meth-

odology. Theoretically, the Riemannian approach is to be

preferred as it does not rely on (possibly badly estimated)

large dissimilarity values. Furthermore, it seems that a

stretch factor circa 3 is sufficient to permit effective

analysis, and avoid the threshold problems associated

with re-estimation procedures such as “step-across”

(Bradfield and Kenkel 1987)

Methodological

In choosing between the Spanner and “SplitsTree”

graphs, I would argue that as a visual representation the

“SplitsTree” graphs are probably more interesting and

useful. However there are a great number of other meth-

ods for obtaining global representations and it would be

foolish to accept either of the two demonstrated here as

optimal.

Choosing between MSTs and Multiple Neighbours is

equally difficult, and again there are a large number of

alternative techniques which need further examination.

But these two methods are computationally tractable,

Figure 8. Multiple 3- neighbour Graph; Mucina data.
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whereas many of the alternatives, such as Dirichlet tessel-

lations and Gabriel graphs, are less attractive in high di-

mensionalities. Overall I believe that the MST is likely to

overemphasise sequential properties at the expense of

more complex structures and therefore I would opt for the

multiple neighbour method.

It should be added that clustering is a useful means of

reducing complexity - any short enough interval can be

regarded as flat. Using clusters does not necessarily mean

accepting discontinuity in the representational space, al-

though methods for assessing dissimilarity in such case

are now available (Chatterjee and Narayanan 1992). By

assembling the clusters into sequences and networks we

can gain a greater insight into the structure of the vegeta-

tion without being overly influenced by sampling prob-

lems.

Conclusion

The main conclusion here is that prior to applying CA

with its implicit assumption of a simple gradient underly-

ing the vegetation patterns, it is desirable to first deter-

mine if such a model is pertinent. To do otherwise is to be

Procrustean, forcing the data to fit our preconceptions.

Plexus methods permit a visual appreciation of the dis-

similarities while being easily appreciated and used. My

suggestions on the basis of limited experience would sug-

gest examining a graph of multiple nearest neighbours to

see if a single sequential ordering is really acceptable.

As with all exploratory methods, they do not answer

all the questions. In particular, if two gradients are ap-

pended into a single “vegetation performance” sequence

examination of the vegetation dissimilarities alone is un-

likely to reveal the possible confounding of environ-

mental gradients.
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