31 research outputs found

    Mechanical loading of cranial joints minimizes the craniofacial phenotype in Crouzon syndrome

    Get PDF
    Children with syndromic forms of craniosynostosis undergo a plethora of surgical interventions to resolve the clinical features caused by the premature fusion of cranial sutures. While surgical correction is reliable, the need for repeated rounds of invasive treatment puts a heavy burden on the child and their family. This study explores a non-surgical alternative using mechanical loading of the cranial joints to prevent or delay craniofacial phenotypes associated with Crouzon syndrome. We treated Crouzon syndrome mice before the onset of craniosynostosis by cyclical mechanical loading of cranial joints using a custom designed set-up. Cranial loading applied to the frontal bone partially restores normal skull morphology, significantly reducing the typical brachycephalic appearance. This is underpinned by the delayed closure of the coronal suture and of the intersphenoidal synchondrosis. This study provides a novel treatment alternative for syndromic craniosynostosis which has the potential to be an important step towards replacing, reducing or refining the surgical treatment of all craniosynostosis patients

    Dual mechanism underlying failure of neural tube closure in the Zic2 mutant mouse

    Get PDF
    Understanding the molecular mechanisms that lead to birth defects is an important step towards improved primary prevention. Mouse embryos homozygous for the Kumba (Ku) mutant allele of Zic2 develop severe spina bifida with complete lack of dorsolateral hinge points (DLHPs) in the neuroepithelium. Bone morphogenetic protein (BMP) signalling is over-activated in Zic2Ku/Ku embryos, and the BMP inhibitor dorsomorphin partially rescues neural tube closure in cultured embryos. RhoA signalling is also over-activated, with accumulation of actomyosin in the Zic2Ku/Ku neuroepithelium, and the myosin inhibitor Blebbistatin partially normalises neural tube closure. However, dorsomorphin and Blebbistatin differ in their effects at tissue and cellular levels: DLHP formation is rescued by dorsomorphin but not Blebbistatin, whereas abnormal accumulation of actomyosin is rescued by Blebbistatin but not dorsomorphin. These findings suggest a dual mechanism of spina bifida origin in Zic2Ku/Ku embryos: BMP-dependent formation of DLHPs is faulty, together with RhoA-dependent F-actin accumulation in the neuroepithelium. Hence, we identify a multi-pathway origin of spina bifida in a mammalian system that may provide a developmental basis for understanding the corresponding multifactorial human defects

    Vangl2 disruption alters the biomechanics of late spinal neurulation leading to spina bifida in mouse embryos

    Get PDF
    peer-reviewedHuman mutations in the planar cell polarity component VANGL2 are associated with the neural tube defect spina bifida. Homozygous Vangl2 mutation in mice prevents initiation of neural tube closure, precluding analysis of its subsequent roles in neurulation. Spinal neurulation involves rostral-to-caudal ā€˜zipperingā€™ until completion of closure is imminent, when a caudal-to-rostral closure point, ā€˜Closure 5ā€™, arises at the caudal-most extremity of the posterior neuropore (PNP). Here, we used Grhl3Cre to delete Vangl2 in the surface ectoderm (SE) throughout neurulation and in an increasing proportion of PNP neuroepithelial cells at late neurulation stages. This deletion impaired PNP closure after the āˆ¼25-somite stage and resulted in caudal spina bifida in 67% of Grhl3Cre/+Vangl2Fl/Fl embryos. In the dorsal SE, Vangl2 deletion diminished rostrocaudal cell body orientation, but not directional polarisation of cell divisions. In the PNP, Vangl2 disruption diminished mediolateral polarisation of apical neuroepithelial F-actin profiles and resulted in eversion of the caudal PNP. This eversion prevented elevation of the caudal PNP neural folds, which in control embryos is associated with formation of Closure 5 around the 25-somite stage. Closure 5 formation in control embryos is associated with a reduction in mechanical stress withstood at the main zippering point, as inferred from the magnitude of neural fold separation following zippering point laser ablation. This stress accommodation did not happen in Vangl2-disrupted embryos. Thus, disruption of Vangl2-dependent planar-polarised processes in the PNP neuroepithelium and SE preclude zippering point biomechanical accommodation associated with Closure 5 formation at the completion of PNP closure

    Integrin-Mediated Focal Anchorage Drives Epithelial Zippering during Mouse Neural Tube Closure.

    Get PDF
    Epithelial fusion is a key process of morphogenesis by which tissue connectivity is established between adjacent epithelial sheets. A striking and poorly understood feature of this process is "zippering," whereby a fusion point moves directionally along an organ rudiment. Here, we uncover the molecular mechanism underlying zippering during mouse spinal neural tube closure. Fusion is initiated via local activation of integrin Ī²1 and focal anchorage of surface ectoderm cells to a shared point of fibronectin-rich basement membrane, where the neural folds first contact each other. Surface ectoderm cells undergo proximal junction shortening, establishing a transitory semi-rosette-like structure at the zippering point that promotes juxtaposition of cells across the midline enabling fusion propagation. Tissue-specific ablation of integrin Ī²1 abolishes the semi-rosette formation, preventing zippering and causing spina bifida. We propose integrin-mediated anchorage as an evolutionarily conserved mechanism of general relevance for zippering closure of epithelial gaps whose disturbance can produce clinically important birth defects

    Over-expression of Grhl2 causes spina bifida in the Axial defects mutant mouse

    Get PDF
    Cranial neural tube defects (NTDs) occur in mice carrying mutant alleles of many different genes, whereas isolated spinal NTDs (spina bifida) occur in fewer models, despite being common human birth defects. Spina bifida occurs at high frequency in the Axial defects (Axd) mouse mutant but the causative gene is not known. In the current study, the Axd mutation was mapped by linkage analysis. Within the critical genomic region, sequencing did not reveal a coding mutation whereas expression analysis demonstrated significant up-regulation of grainyhead-like 2 (Grhl2) in Axd mutant embryos. Expression of other candidate genes did not differ between genotypes. In order to test the hypothesis that over-expression of Grhl2 causes Axd NTDs, we performed a genetic cross to reduce Grhl2 function in Axd heterozygotes. Grhl2 loss of function mutant mice were generated and displayed both cranial and spinal NTDs. Compound heterozygotes carrying both loss (Grhl2 null) and putative gain of function (Axd) alleles exhibited normalization of spinal neural tube closure compared with Axd/+ littermates, which exhibit delayed closure. Grhl2 is expressed in the surface ectoderm and hindgut endoderm in the spinal region, overlapping with grainyhead-like 3 (Grhl3). Axd mutants display delayed eyelid closure, as reported in Grhl3 null embryos. Moreover, Axd mutant embryos exhibited increased ventral curvature of the spinal region and reduced proliferation in the hindgut, reminiscent of curly tail embryos, which carry a hypomorphic allele of Grhl3. Overall, our data suggest that defects in Axd mutant embryos result from over-expression of Grhl2

    Culshaw et al, dataset for BDR paper

    No full text
    Spreadsheet containing raw data and statistical analyses for Figures 1, 4, 5, 6 and 8

    Autism as a metabolic disorder Urinary profiles of people with autism : possible implications and relevance to other research

    No full text
    Paper presented at the Durham conference April 1996. Includes bibliographical referencesAvailable from British Library Document Supply Centre- DSC:m03/24972 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Protrusion classification

    No full text
    This dataset contains all the SEM images used for protrusion classification in Rolo et al., along with a spreadsheet containing information about the embryos used (cross, genotype, somite-stage (ss)). All images were acquired at 2000x magnification with a with a JEOL 7401 FEGSEM (see Materials and Methods for full details)
    corecore