2,546 research outputs found
An Ultra-Stable Referenced Interrogation System in the Deep Ultraviolet for a Mercury Optical Lattice Clock
We have developed an ultra-stable source in the deep ultraviolet, suitable to
fulfill the interrogation requirements of a future fully-operational lattice
clock based on neutral mercury. At the core of the system is a Fabry-P\'erot
cavity which is highly impervious to temperature and vibrational perturbations.
The mirror substrate is made of fused silica in order to exploit the
comparatively low thermal noise limits associated with this material. By
stabilizing the frequency of a 1062.6 nm Yb-doped fiber laser to the cavity,
and including an additional link to LNE-SYRTE's fountain primary frequency
standards via an optical frequency comb, we produce a signal which is both
stable at the 1E-15 level in fractional terms and referenced to primary
frequency standards. The signal is subsequently amplified and frequency-doubled
twice to produce several milliwatts of interrogation signal at 265.6 nm in the
deep ultraviolet.Comment: 7 pages, 6 figure
Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber
Trapping and optically interfacing laser-cooled neutral atoms is an essential
requirement for their use in advanced quantum technologies. Here we
simultaneously realize both of these tasks with cesium atoms interacting with a
multi-color evanescent field surrounding an optical nanofiber. The atoms are
localized in a one-dimensional optical lattice about 200 nm above the nanofiber
surface and can be efficiently interrogated with a resonant light field sent
through the nanofiber. Our technique opens the route towards the direct
integration of laser-cooled atomic ensembles within fiber networks, an
important prerequisite for large scale quantum communication schemes. Moreover,
it is ideally suited to the realization of hybrid quantum systems that combine
atoms with, e.g., solid state quantum devices
Dispersive Optical Interface Based on Nanofiber-Trapped Atoms
We dispersively interface an ensemble of one thousand atoms trapped in the
evanescent field surrounding a tapered optical nanofiber. This method relies on
the azimuthally-asymmetric coupling of the ensemble with the evanescent field
of an off-resonant probe beam, transmitted through the nanofiber. The resulting
birefringence and dispersion are significant; we observe a phase shift per atom
of \,1\,mrad at a detuning of six times the natural linewidth,
corresponding to an effective resonant optical density per atom of 0.027.
Moreover, we utilize this strong dispersion to non-destructively determine the
number of atoms.Comment: 4 pages, 4 figure
Introduction to protein folding for physicists
The prediction of the three-dimensional native structure of proteins from the
knowledge of their amino acid sequence, known as the protein folding problem,
is one of the most important yet unsolved issues of modern science. Since the
conformational behaviour of flexible molecules is nothing more than a complex
physical problem, increasingly more physicists are moving into the study of
protein systems, bringing with them powerful mathematical and computational
tools, as well as the sharp intuition and deep images inherent to the physics
discipline. This work attempts to facilitate the first steps of such a
transition. In order to achieve this goal, we provide an exhaustive account of
the reasons underlying the protein folding problem enormous relevance and
summarize the present-day status of the methods aimed to solving it. We also
provide an introduction to the particular structure of these biological
heteropolymers, and we physically define the problem stating the assumptions
behind this (commonly implicit) definition. Finally, we review the 'special
flavor' of statistical mechanics that is typically used to study the
astronomically large phase spaces of macromolecules. Throughout the whole work,
much material that is found scattered in the literature has been put together
here to improve comprehension and to serve as a handy reference.Comment: 53 pages, 18 figures, the figures are at a low resolution due to
arXiv restrictions, for high-res figures, go to http://www.pabloechenique.co
Developing a user informed training package for mentoring people on the autism spectrum
In light of the limited evidence-base and the criticisms of existing guidance, a two-year pilot
study was funded by Research Autism to establish a mentoring scheme, designed with input
from people on the autism spectrum and their families and supporters. The impact of the
scheme in improving the wellbeing of adults on the spectrum will be rigorously examined.
The Project was granted ethical approval by London South Bank University Research Ethics
Committee (approval number UREC 1469) in March 2015
Untangling the Conceptual Isssues Raised in Reydon and Scholz’s Critique of Organizational Ecology and Darwinian Populations
Reydon and Scholz raise doubts about the Darwinian status of organizational ecology by arguing that Darwinian principles are not applicable to organizational populations. Although their critique of organizational ecology’s typological essentialism is correct, they go on to reject the Darwinian status of organizational populations. This paper claims that the distinction between replicators and interactors, raised in modern philosophy of biology but not discussed by Reydon and Scholz, points the way forward for organizational ecologists. It is possible to conceptualise evolving Darwinian populations providing the inheritance mechanism is appropriately specified. By this approach, adaptation and selection are no longer dichotomised, and the evolutionary significance of knowledge transmission is highlightedPeer reviewe
On religion and cultural policy: notes on the Roman Catholic Church
This paper argues that religious institutions have largely been neglected within the study of cultural policy. This is attributed to the inherently secular tendency of most modern social sciences. Despite the predominance of the ‘secularisation paradigm’, the paper notes that religion continues to promote powerful attachments and denunciations. Arguments between the ‘new atheists’, in particular, Richard Dawkins, and their opponents are discussed, as is Habermas’s conciliatory encounter with Joseph Ratzinger (later Pope Benedict XVI). The paper then moves to a consideration of the Roman Catholic Church as an agent of cultural policy, whose overriding aim is the promotion of ‘Christian consciousness’. Discussion focuses on the contested meanings of this, with reference to (1) the deliberations of Vatican II and (2) the exercise of theological and cultural authority by the Pope and the Congregation for the Doctrine of the Faith (CDF). It is argued that these doctrinal disputes intersect with secular notions of social and cultural policy and warrant attention outside the specialist realm of theological discourse
Long-distance remote comparison of ultrastable optical frequencies with 1e-15 instability in fractions of a second
We demonstrate a fully optical, long-distance remote comparison of
independent ultrastable optical frequencies reaching a short term stability
that is superior to any reported remote comparison of optical frequencies. We
use two ultrastable lasers, which are separated by a geographical distance of
more than 50 km, and compare them via a 73 km long phase-stabilized fiber in a
commercial telecommunication network. The remote characterization spans more
than one optical octave and reaches a fractional frequency instability between
the independent ultrastable laser systems of 3e-15 in 0.1 s. The achieved
performance at 100 ms represents an improvement by one order of magnitude to
any previously reported remote comparison of optical frequencies and enables
future remote dissemination of the stability of 100 mHz linewidth lasers within
seconds.Comment: 7 pages, 4 figure
Design for a Darwinian Brain: Part 1. Philosophy and Neuroscience
Physical symbol systems are needed for open-ended cognition. A good way to
understand physical symbol systems is by comparison of thought to chemistry.
Both have systematicity, productivity and compositionality. The state of the
art in cognitive architectures for open-ended cognition is critically assessed.
I conclude that a cognitive architecture that evolves symbol structures in the
brain is a promising candidate to explain open-ended cognition. Part 2 of the
paper presents such a cognitive architecture.Comment: Darwinian Neurodynamics. Submitted as a two part paper to Living
Machines 2013 Natural History Museum, Londo
- …