1,084 research outputs found
The asymptotic relative efficiency of mixed statistical tests
Mixed statistical tests are described. It is shown that these tests have a much higher efficiency than conventionally used statistics such as the sign test and polarity coincidence correlation without the high operational complexity of the Wilcoxon, Mann-Whitney, Kendall\tau, or Fisher-Yates: Terry-Hoeffding tests
The Locality Problem in Quantum Measurements
The locality problem of quantum measurements is considered in the framework
of the algebraic approach. It is shown that contrary to the currently
widespread opinion one can reconcile the mathematical formalism of the quantum
theory with the assumption of the existence of a local physical reality
determining the results of local measurements. The key quantum experiments:
double-slit experiment on electron scattering, Wheeler's delayed-choice
experiment, the Einstein-Podolsky-Rosen paradox, and quantum teleportation are
discussed from the locality-problem point of view. A clear physical
interpretation for these experiments, which does not contradict the classical
ideas, is given.Comment: Latex, 40 pages, 7 figure
Attosecond double-slit experiment
A new scheme for a double-slit experiment in the time domain is presented.
Phase-stabilized few-cycle laser pulses open one to two windows (``slits'') of
attosecond duration for photoionization. Fringes in the angle-resolved energy
spectrum of varying visibility depending on the degree of which-way information
are observed. A situation in which one and the same electron encounters a
single and a double slit at the same time is discussed. The investigation of
the fringes makes possible interferometry on the attosecond time scale. The
number of visible fringes, for example, indicates that the slits are extended
over about 500as.Comment: 4 figure
Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions
The internally electrodynamic (IED) particle model was derived based on
overall experimental observations, with the IED process itself being built
directly on three experimental facts, a) electric charges present with all
material particles, b) an accelerated charge generates electromagnetic waves
according to Maxwell's equations and Planck energy equation and c) source
motion produces Doppler effect. A set of well-known basic particle equations
and properties become predictable based on first principles solutions for the
IED process; several key solutions achieved are outlined, including the de
Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass,
Einstein mass-energy relation, Newton's law of gravity, single particle self
interference, and electromagnetic radiation and absorption; these equations and
properties have long been broadly experimentally validated or demonstrated. A
specific solution also predicts the Doebner-Goldin equation which emerges to
represent a form of long-sought quantum wave equation including gravity. A
critical review of the key experiments is given which suggests that the IED
process underlies the basic particle equations and properties not just
sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200
On the verge of Umdeutung in Minnesota: Van Vleck and the correspondence principle (Part One)
In October 1924, the Physical Review, a relatively minor journal at the time,
published a remarkable two-part paper by John H. Van Vleck, working in virtual
isolation at the University of Minnesota. Van Vleck combined advanced
techniques of classical mechanics with Bohr's correspondence principle and
Einstein's quantum theory of radiation to find quantum analogues of classical
expressions for the emission, absorption, and dispersion of radiation. For
modern readers Van Vleck's paper is much easier to follow than the famous paper
by Kramers and Heisenberg on dispersion theory, which covers similar terrain
and is widely credited to have led directly to Heisenberg's "Umdeutung" paper.
This makes Van Vleck's paper extremely valuable for the reconstruction of the
genesis of matrix mechanics. It also makes it tempting to ask why Van Vleck did
not take the next step and develop matrix mechanics himself.Comment: 82 page
Lady Gaga as (dis)simulacrum of monstrosity
Lady Gaga’s celebrity DNA revolves around the notion of monstrosity, an extensively
researched concept in postmodern cultural studies. The analysis that is offered in this
paper is largely informed by Deleuze and Guattari’s notion of monstrosity, as well as
by their approach to the study of sign-systems that was deployed in A Thousand
Plateaus. By drawing on biographical and archival visual data, with a focus on the
relatively underexplored live show, an elucidation is afforded of what is really monstrous
about Lady Gaga. The main argument put forward is that monstrosity as sign
seeks to appropriate the horizon of unlimited semiosis as radical alterity and openness
to signifying possibilities. In this context it is held that Gaga effectively delimits her
unique semioscape; however, any claims to monstrosity are undercut by the inherent
limits of a representationalist approach in sufficiently engulfing this concept. Gaga is
monstrous for her community insofar as she demands of her fans to project their
semiosic horizon onto her as a simulacrum of infinite semiosis. However, this simulacrum
may only be evinced in a feigned manner as a (dis)simulacrum. The analysis of
imagery from seminal live shows during 2011–2012 shows that Gaga’s presumed
monstrosity is more akin to hyperdifferentiation as simultaneous employment of
heterogeneous and potentially dissonant inter pares cultural representations. The article
concludes with a problematisation of audience effects in the light of Gaga’s adoption of
a schematic and post-representationalist strategy in the event of her strategy’s emulation
by competitive artists
A Synergistic Antiproliferation Effect of Curcumin and Docosahexaenoic Acid in SK-BR-3 Breast Cancer Cells: Unique Signaling Not Explained by the Effects of Either Compound Alone.
Background
Breast cancer is a collection of diseases in which molecular phenotypes can act as both indicators and mediators of therapeutic strategy. Therefore, candidate therapeutics must be assessed in the context of multiple cell lines with known molecular phenotypes. Docosahexaenoic acid (DHA) and curcumin (CCM) are dietary compounds known to antagonize breast cancer cell proliferation. We report that these compounds in combination exert a variable antiproliferative effect across multiple breast cell lines, which is synergistic in SK-BR-3 cells and triggers cell signaling events not predicted by the activity of either compound alone. Methods
Dose response curves for CCM and DHA were generated for five breast cell lines. Effects of the DHA+ CCM combination on cell proliferation were evaluated using varying concentrations, at a fixed ratio, of CCM and DHA based on their individual ED50. Detection of synergy was performed using nonlinear regression of a sigmoid dose response model and Combination Index approaches. Cell molecular network responses were investigated through whole genome microarray analysis of transcript level changes. Gene expression results were validated by RT-PCR, and western blot analysis was performed for potential signaling mediators. Cellular curcumin uptake, with and without DHA, was analyzed via flow cytometry and HPLC. Results
CCM+DHA had an antiproliferative effect in SK-BR-3, MDA-MB-231, MDA-MB-361, MCF7 and MCF10AT cells. The effect was synergistic for SK-BR-3 (ER- PR- Her2+) relative to the two compounds individually. A whole genome microarray approach was used to investigate changes in gene expression for the synergistic effects of CCM+DHA in SK-BR-3 cells lines. CCM+DHA triggered transcript-level responses, in disease-relevant functional categories, that were largely non-overlapping with changes caused by CCM or DHA individually. Genes involved in cell cycle arrest, apoptosis, inhibition of metastasis, and cell adhesion were upregulated, whereas genes involved in cancer development and progression, metastasis, and cell cycle progression were downregulated. Cellular pools of PPARγ and phospho-p53 were increased by CCM+DHA relative to either compound alone. DHA enhanced cellular uptake of CCM in SK-BR-3 cells without significantly enhancing CCM uptake in other cell lines. Conclusions
The combination of DHA and CCM is potentially a dietary supplemental treatment for some breast cancers, likely dependent upon molecular phenotype. DHA enhancement of cellular curcumin uptake is one potential mechanism for observed synergy in SK-BR-3 cells; however, transcriptomic data show that the antiproliferation synergy accompanies many signaling events unique to the combined presence of the two compounds
Conscientious Objection: Understanding When and Why Primary Care Physicians Object to Providing Health Care to Transgender and Gender-Diverse Patients in an Appalachian Medical Center
Introduction: Transgender and gender-diverse (TGD) individuals face barriers to accessing primary and gender-affirming care, especially in rural regions where a national shortage of medical providers with skills in caring for TGD people is further magnified. This care may also be impacted by individual providers’ strongly held personal or faith beliefs and associated conscientious objection to care.
Purpose: This study assesses the prevalence of conscientious objection to providing care and gender-affirming hormone (GAH) therapy to TGD individuals among physicians in an Appalachian academic medical center.
Methods: An anonymous, online, cross-sectional survey of physicians was distributed to resident and faculty physicians in an Appalachian medical center. Survey domains included demographics, personal religious affiliations and practices, and assessments of willingness to provide specific types of care.
Results: Surveyed physicians (n = 115) had no objection to caring for TGD patients but notable objection to prescribing GAH therapy to adults (23.5%) and minors (33.0%). Self-identified “very religious” physicians were more likely to object.
Implications: Physician objection may present a barrier to care for TGD individuals in Appalachia. Provider and system-level interventions should be considered to ensure access to these necessary medical services
Full-length human placental sFlt-1-e15a isoform induces distinct maternal phenotypes of preeclampsia in mice
<div><p>Objective</p><p>Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring.</p><p>Methods</p><p>Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia.</p><p>Results</p><p>Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3±51.7μg/mg vs. 19.3±5.6μg/mg, p = 4.4x10<sup>-2</sup>; GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2x10<sup>-2</sup>). Placental and fetal weights did not differ between the groups. One mouse with liver disease developed early-onset preeclampsia-like symptoms with intrauterine growth restriction (IUGR).</p><p>Conclusions</p><p>A mouse model of late-onset preeclampsia was developed with the overexpression of hsFlt-1-e15a, verifying the <i>in vivo</i> pathologic effects of this primate-specific, predominant placental sFlt-1 isoform. HsFlt-1-e15a induced early-onset preeclampsia-like symptoms associated with IUGR in a mouse with a liver disease. Our findings support that hsFlt-1-e15a is central to the terminal pathway of preeclampsia, and it can induce the full spectrum of symptoms in this obstetrical syndrome.</p></div
Addressing the unmet clinical need for low-volume assays in early diagnosis of pancreatic cancer
The incidental detection of pancreatic cysts, an opportunity for the early detection of pancreatic cancer, is increasing, owing to an aging population and improvements in imaging technology. The classification of pancreatic cystic precursors currently relies on imaging and cyst fluid evaluations, including cytology and protein and genomic analyses. However, there are persistent limitations that obstruct the accuracy and quality of information for clinicians, including the limited volume of the complex, often acellular, and proteinaceous milieu that comprises pancreatic cyst fluid. The constraints of currently available clinical assays lead clinicians to the subjective and inconsistent application of diagnostic tools, which can contribute to unnecessary surgery and missed pancreatic cancers. Herein, we describe the pathway toward pancreatic cyst classification and diagnosis, the volume requirements for several clinically available diagnostic tools, and some analytical and diagnostic limitations for each assay. We then discuss current and future work on novel markers and methods, and how to expand the utility of clinical pancreatic cyst fluid samples. Results of ongoing studies applying SERS as a detection mode suggest that 50 µL of pancreatic cyst fluid is more than sufficient to accurately rule out non-mucinous pancreatic cysts with no malignant potential from further evaluation. This process is expected to leave sufficient fluid to analyze a follow-up, rule-in panel of markers currently in development that can stratify grades of dysplasia in mucinous pancreatic cysts and improve clinical decision-making
- …
