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The incidental detection of pancreatic cysts, an opportunity for the early

detection of pancreatic cancer, is increasing, owing to an aging population

and improvements in imaging technology. The classification of pancreatic cystic

precursors currently relies on imaging and cyst fluid evaluations, including

cytology and protein and genomic analyses. However, there are persistent

limitations that obstruct the accuracy and quality of information for clinicians,

including the limited volume of the complex, often acellular, and proteinaceous

milieu that comprises pancreatic cyst fluid. The constraints of currently available

clinical assays lead clinicians to the subjective and inconsistent application of

diagnostic tools, which can contribute to unnecessary surgery and missed

pancreatic cancers. Herein, we describe the pathway toward pancreatic cyst

classification and diagnosis, the volume requirements for several clinically

available diagnostic tools, and some analytical and diagnostic limitations for

each assay. We then discuss current and future work on novel markers and

methods, and how to expand the utility of clinical pancreatic cyst fluid samples.

Results of ongoing studies applying SERS as a detection mode suggest that 50 µL

of pancreatic cyst fluid is more than sufficient to accurately rule out non-

mucinous pancreatic cysts with no malignant potential from further evaluation.

This process is expected to leave sufficient fluid to analyze a follow-up, rule-in

panel of markers currently in development that can stratify grades of dysplasia in

mucinous pancreatic cysts and improve clinical decision-making.

KEYWORDS

rule-out, rule-in, dysplasia, early diagnosis, surface-enhanced Raman spectroscopy,
pancreatic cancer, pancreatic cystic lesions
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1 Introduction

Pancreatic cancer continues to move toward the top of the list of

deadliest cancers, with an estimated 5-year survival rate of around 10%

(1). The grim outlook for this disease can be directly attributed to the

late stage at which an accurate diagnosis is typically achieved.

Pancreatic cystic lesions are potential predictors of progression to

cancer, and understanding the progression from cyst to cancer

provides an avenue for early pancreatic cancer detection. Pancreatic

cystic lesions are incidentally detected in 3 million (and growing)

patients annually in the USA and present a real-world clinical problem

for diagnosing early-stage malignancy accurately (2). Several studies

have estimated from post mortem autopsy analysis that 24% of people

over 60 years old could pass away with an unidentified pancreatic cyst

of variable clinical signficance (3–5). An impediment to early-stage

detection is the lack of noticeable symptoms during progression from

non-malignant pancreatic cyst to invasive pancreatic cancer until it is

too late for meaningful intervention (6–8). At the time of this

publication, there are no approved screening methods to detect

pancreatic cysts or cancer for the population at large. Thus, a

significant problem in the management of pancreatic cystic lesions is

simply finding patients in whom a potentially malignant pancreatic

cyst has developed and identifying those patients for whom surgical

resection is necessary. Conversely, patients with indolent pancreatic

cysts that will never progress to malignancy should also be identified to

avoid unnecessary surgery. As a result, a significant number of people

remain undiagnosed or untreated at a time when surgical resection

would be beneficial.

Over the past decade, efforts have focused on improving

diagnostic resolution in pancreatic cancer. Novel diagnostic tools,

markers, and analytical methods are providing more information

about effective approaches to diagnosis. Still, there remains an

unmet need for such tools to be translated into clinical settings.

This work will discuss the current pathway to diagnosis, including

the limitations of clinical diagnostic tools for pancreatic cancer,

followed by advances being made in laboratories for translation into

clinical settings. This article is not intended to be a comprehensive

analysis of every marker and tool reported. Instead, the intention is

to identify unmet needs associated with the accurate clinical

diagnosis of pancreatic cysts, focusing on the current standards of

care, and examine select projects that are seeking translation to the

clinic to address these unmet needs and enhance the resolution for

this troublesome diagnosis.
2 Current pathway to diagnosis

Pancreatic cyst patient management is shaped by three main

guidelines (ACG, AGA, and Fukuoka), which seek to incorporate

imaging and cyst fluid analyses to guide the management of a

pancreatic cyst for surveillance or surgical resection (9–11). Most

patients with pancreatic cysts have “indeterminate” cysts in which

both the type (mucinous vs. non-mucinous) and histologic grade are

radiographically uncertain (12, 13). These patients are often referred

for endoscopic ultrasound with fine needle aspiration (EUS-FNA) to

extract pancreatic cyst fluid samples for chemical and genomic
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analyses. Although EUS-FNA is a complex and invasive process, it

is preferred to endoscopic solid tissue biopsy with microforceps

because of the elevated risks associated with the tissue biopsy

procedure and an estimated diagnostic improvement of only 10%

(14, 15). As discussed throughout this article, pancreatic cyst fluid is a

commonly acellular, highly proteinaceous, and viscous biofluid that

contains a wealth of bioinformation and substances that could

potentially interfere with clinical assays.

Ideally, the first step in diagnosis is to rule out potential

malignancy by differentiating between non-mucinous pancreatic

cysts that are predominantly benign from mucinous cysts that have

a 10%–50% chance of progressing to cancer (16). With these two

cohorts identified, different treatment plans can be crafted, wherein

patients in need of further testing of a potentially malignant

mucinous pancreatic cyst are prioritized. In this situation, the

roughly 20%–40% of patients that undergo an EUS-FNA

procedure and are confirmed to have a non-mucinous cyst are

spared from further surveillance and the attendant emotional,

physical, and financial burdens of repeat doctor visits, diagnostic

testing, and monitoring (16, 17). Next, clinicians strive to stratify

the mucinous population based on the actual risk of progression to

cancer (the rule-in phase). This second diagnosis phase is decidedly

more challenging, as the established markers for the rule-out

diagnosis have not proven to be adequate predictors of

progression to cancer for rule-in determinations (18). As a result,

although new marker discoveries are ongoing, there is not currently

an accepted method by which pancreatic cysts with high-grade

dysplasia or early invasive cancer can be quickly and accurately

identified. It is also important to note that this process is rarely as

straightforward as presented here or in Figure 1. However, multiple

technologies have been developed, and continue to be improved,

that can accurately determine the type of pancreatic cyst present.
3 Current clinical diagnostic tools

3.1 Imaging and cytological analysis

Pancreatic cysts are commonly found incidentally during

routine imaging for unrelated disorders. Advances in CT and
FIGURE 1

General pancreatic cyst diagnosis strategy and example tests for
each phase.
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MRI imaging have improved resolution such that more and smaller

pancreatic cysts can now be identified, providing an opportunity for

earlier diagnosis (19). However, this comes with the drawback that

smaller cysts are more challenging to classify and produce less cyst

fluid for biochemical analyses. The primary utility of imaging for

classification relies on shape/size and location. It has been

established over the years that cysts that form within the main

pancreatic duct and those that have grown beyond 3 cm are more

likely to progress to cancerous lesions than cysts that form in other

regions of the pancreas or smaller cysts, however the risk remains

highly variable (10). Although helpful, as with any image analysis,

this approach comes with a subjective bias that hinders accurate

diagnosis. Efforts to avoid image interpretation errors have focused

on using machine learning and artificial intelligence methods (ML-

AI) to process all available images and more accurately determine

the classification of a pancreatic cyst. This work is mainly in the

nascent stage, and it shows greater promise in organs like the lung

in which the tumor signal-to-background ratio is high. In contrast,

the solid components of pancreatic tumors are frequently

camouflaged, making them difficult to detect (20). For patients

with indeterminate cystic lesions of sufficient size, the next logical

step is often to sample the cyst fluid and conduct (bio)

chemical analyses.

Use of the EUS-FNA procedure has become more widespread,

as the information contained within pancreatic cyst fluid has

proven valuable (21–23). This section, and the following sections,

will focus on EUS-FNA fluid analysis. In the case of pancreatic cyst

fluid, microscopic examination of fluid contents (cytology) has the

potential to accurately diagnose a pancreatic cyst with high-grade

dysplasia or adenocarcinoma. However, the examination is often

non-diagnostic because of the paucity of tumor cells in the fluid,

with an estimated 31% success rate for obtaining cells for cytological

analysis (24). Furthermore, the sample volume required for slide

preparation may exceed 500 µL, which is often unavailable.

Although this is a common clinical practice for diagnosing

pancreatic cysts, the limited cellularity of pancreatic cyst fluid

yields relatively low clinical utility; thus, we will omit any further

discussion of cytology.
3.2 Cancer protein biomarkers

Biomarkers indicative of cancer have been studied, published,

and established in the clinic as screening and diagnostic tools. Every

cancer is different, but several biomarkers consistently present

themselves during clinical investigations (25, 26). Their ubiquity

makes them generally poor predictors of cancer type, but they

unquestionably retain utility as indicators of cancer or progression

toward cancer when the possibility of cancer arises. In the case of

pancreatic cancer, carcinoembryonic antigen (CEA) and amylase

have been used extensively in the clinic to support rule-out

diagnoses. However, neither marker is individually indicative of

either non-mucinous or mucinous pancreatic cyst fluid, with low

sensitivity and/or specificity (27, 28). Other markers that suffer

similar fates in clinical settings include CA19-9 and glucose;

however, glucose has maintained clinical relevance for
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determining mucinous pancreatic cysts, with a sensitivity and

specificity over 80% (29–32). For clinical labs, however, any of

these markers represent a seemingly sensible method, as they are all

amenable to automated processing on clinical analyzers, with little

training or upgrades needed. Importantly, this reliance on

convenience is still rife, causing clinical problems for diagnosis.

Clinical analyzers and their associated assays have been

developed to work with highly proteinaceous fluids such as blood,

serum, or plasma, and some are compatible with alternative biofluids

such as urine or saliva. None of these fluids compare with pancreatic

cyst fluid’s relatively high complexity and inter-sample variability. A

basic review of published investigations into proteomic analyses of

pancreatic cyst fluid reveals thousands of individual biomaterials

present in any given sample (18, 33, 34). Still more problematic is that

high concentrations of biomaterials have been established to cause

inaccuracy and/or decreased reproducibility/repeatability in standard

assay formats (35–37). For example, viscous materials like mucins

present challenges in basic liquid handling, leading to erroneous

sample volume transfers and assay results. Furthermore, the sample

volume requirements for clinical analyzers often preclude the

replicate analysis of multiple markers in single pancreatic cyst fluid

samples. The balance at hospital clinics between high-throughput

analysis and sample preservation is certainly skewed toward high

throughput. Furthermore, the standards set by the analysis of readily

available blood samples are often inappropriate for pancreatic cyst

fluid samples. Although assays for markers of interest could be run at

lower volumes, the analyzers employed in the clinic often require

200–500 µL of sample per run.When these factors are taken together,

it is unsurprising that assays of biomarkers that lack sensitivity and

specificity, and inhibit multiple-marker analyses due to sample

consumption, inevitably lack the capacity for accurate diagnosis.

However, there are alternative protein markers still undergoing

translational research that can provide useful diagnostic information.

For instance, vascular endothelial growth factor (VEGF) has been

shown to be a reliable marker of notoriously difficult to diagnose

serous cystic neoplasms (SCNs) (38–40). SCNs are non-mucinous

pancreatic cysts that are difficult to distinguish from potentially

malignant intraductal papillary mucinous neoplasms (IPMNs) and

mucinous cystic neoplasms (MCNs) using imaging or the previously

described protein markers (41). Although they constitute an

estimated 1%–2% of all pancreatic cysts, avoiding unnecessary

surgical intervention for SCNs will improve the quality of life for

patients (42). In addition to VEGF, the monoclonal antibody Das-1,

originally used as a marker of colonic epithelial phenotype, has shown

utility in predicting malignancy in conditions of the upper GI tract

(43, 44). Importantly, Das-1 has displayed the unique ability to

stratify low- and high-grade dysplasia and invasive cancer in

mucinous pancreatic cyst fluid.
3.3 Genomic markers and methods
of interest

Research into the genetic drivers of pancreatic cancer has found

long lists of markers in DNA, RNA, miRNA, and mRNA, and has

recently made the logical step toward combination marker panels
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investigating several genetic components at once. Again, most of the

tools have not translated into clinical utility, except for DNA

markers that can be amplified and quantified in high-throughput

platforms (45, 46). Next-generation sequencing (NGS) is a

technique that emerged on the market in the mid-2000s, and has

provided a wealth of information for researchers in biology and

biochemistry. Every clinical sample prepared for extraction is

subject to volume requirements to meet the demand of the

extraction method. Although sample preparation for NGS can be

conducted with lower volumes, to counter low-genomic-content

samples, general estimates for required sample volume are around

500 µL (47). This means that NGS is expected to consume

significant resources from a limited pancreatic cyst fluid sample,

further constraining the utility of other diagnostic tools.

Regardless, although the fluid is typically acellular, NGS has

produced rich genetic information from pancreatic cyst fluid

samples. Studies investigating genetic markers or defects have

found that NGS can accurately diagnose specific cyst types. A

prime recent example of this is the study by Paniccia et al.,

wherein they investigated 1,933 pancreatic cyst fluid samples for

genomic content and were able to diagnose those cysts with

negative predictive values (NPVs) and positive predictive values

(PPVs) greater than 90% in most cases (48). They also made use of

imaging where available to supplement NGS data and further

improve the NPV and PPV in select cases. With the cyst type

identified, a more practical treatment course can be determined,

and this information indeed leads to better diagnostic outcomes for

patients. But it is again important to note that cyst type alone does

not confer sufficient information about the degree of risk of

progression to cancer. Recent efforts have focused on improving

analysis algorithms to identify cyst types better and eventually

stratify dysplasia.
4 Advanced research geared toward
clinical translation

4.1 Rise of exosomal research and the
impact on diagnostics

Recent years have seen a tremendous increase in interest in

biological exosomes (49). Broadly speaking, exosomes are vesicles

ranging in size from 10—200 nm that are released from cells and

contain unique chemical and genetic information. Exosomes are

found in many distinct human biofluids, with the majority of

research focused on blood-based exosomes, which contain

information from any tissue source secreting into the bloodstream.

Blood-based exosomes are ideal targets for the analysis of most

disease states, including, if not especially, cancer (50). It has been

hypothesized that cells use exosomes to inform their local community

of different signals and activation patterns (51). Until recently,

however, efficient isolation of such material from biological sources

was complicated at best, and near impossible at worst.

Multiple methods, including ultracentrifugation, size exclusion

chromatography, and immunoaffinity have been used to isolate

exosomes with varying degrees of success and recovery. However, a
Frontiers in Gastroenterology 04
recent study by Hinestrosa et al. demonstrated a clever method for

isolating exosomes from plasma, wherein they used an electrode

array to attract the charged membrane of exosomes to a solid

support from which they can be washed and resuspended for

analysis (52). This study investigated exosomes to identify

pancreatic, ovarian, and bladder cancers, and analyzed the

resulting samples with commercially available protein

quantification kits. The compiled data were used to train an

algorithm for multiple markers that could accurately detect early-

stage cancer, and displayed a high sensitivity for pancreatic cancer.

These results suggest that exosomes should continue to be a source

of diagnostic information, and it is likely that with some further

marker optimization and refined assay development this isolation

technology has the potential for widespread adoption in

cancer diagnostics.
4.2 Protease activity as a
functional biomarker

An underutilized approach in the search for clinically

translatable diagnostic assays in pancreatic cancer has been the

analysis of enzyme activity, as opposed to enzyme mass (53–56).

Immunoassays dominate the landscape of biomarker analysis and

have been readily adapted into automated systems that improve

throughput, reproducibility, and sample handling. ELISA-based

methods have provided an incomparable wealth of data about

protein expression and are now a mainstay in research and

clinical laboratories. However, immunoassays quantify the

amount of protein present, which can be ambiguous when

investigating enzyme markers as active (or activatable) enzymes

are responsible for signaling cascades, metabolism, and

phenotypical responses (57–59). There have been publications

over the years examining protease cleavage, enzymatic redox

reactions, and other activity measurements. Yet still, these assays

have struggled to translate meaningfully to clinical settings in the

same way that immunoassays have over the decades. One possible

reason is that, although protease cleavages are an amplification

process, proteolytic activity on substrates is not necessarily as

efficient or rapid a process as the commonly used secondary

reactions in ELISA formats. Due to the lower amplification of

optically active products, it is difficult for traditional optical

methods to detect and quantify low activity. It is even more

complicated when sample volumes are limited.

Clinical assays rely on optical detection methods including

luminescence, fluorescence, and absorbance. New protein

biomarkers are routinely identified using mass spectrometry (MS)

methods. However, for many of these candidate markers, the

expression level is below the limits of detection for traditional

optical methods. A path forward is the use of alternative

detection technologies such as Raman spectroscopy. Raman

spectroscopy is based on an inelastic light scattering event that

imbues the scattered photons with chemical and structural

information owing to the excitation of molecular vibrational

modes. Although only approximately 1 in 100,000,000 photons

are predicted to produce Raman scattering, the introduction of a
frontiersin.org

https://doi.org/10.3389/fgstr.2023.1258998
https://www.frontiersin.org/journals/gastroenterology
https://www.frontiersin.org


Sheik et al. 10.3389/fgstr.2023.1258998
coinage metal (Au, Ag, or Cu) surface has been shown to enhance

the Raman scattering intensity by multiple orders of magnitude,

leading to ultrasensitive detection limits (60, 61). First discovered in

1974, surface-enhanced Raman spectroscopy (SERS) has become a

more practical tool as the cost and size of Raman equipment have

dramatically decreased (62, 63). Recent investigators have used

SERS to detect single-molecule Raman signals (SMSERS), which

provides additional support for the utility of SERS in clinical assays

for low-concentration and/or low-volume samples (64–66).

Furthermore, the chemical fingerprint information provided by

Raman scattering enables discrimination of multiple dye classes

(i.e., fluoresceins, rhodamines, cyanines), or dyes with variable

isotopic labeling, enabling intrasample multiplexing at incredibly

low concentrations (67–70).

The authors of this review have translated assays using Raman-

active dyes that have shown detection limits below those of

traditional fluorescence measurements (71). Furthermore, Suresh

et al. have published the first example of translating a SERS assay for

protease activity of gastricsin to a clinically ready platform with a

small cohort of human pancreatic cyst fluid samples (72).

Pancreatic cyst fluid is a notoriously tricky medium with which to

run assays or optically quantify results, and the simplest solution is

significant sample dilution to diminish interfering substances. The

ultrasensitivity of SERS and a protease activity assay that displayed

reduced interference from the sample milieu provided an ideal assay

platform for high-dilution quantification. Importantly, the

published results were from assays of 1 µL of pancreatic cyst

fluid, supporting the analysis of multiple markers indicative of

pancreatic cancer from single pancreatic cyst fluid samples without

high volume requirements. Currently the group is engaged in a

statistically powered study with a larger cohort and a panel of three

biomarker assays that is expected to produce an NPV of >95% for

identifying non-mucinous pancreatic cyst fluid. Again, all three

assays are run using only 12 mL of clinical sample, meaning that

these efforts do not disrupt current standards of clinical care, and

analyze a sample volume that would be incompatible with

contemporary clinical assays.
5 Discussion and future directions

Each area of research described in this article has produced

undeniable advances in support of decision-making for patients in

whom a pancreatic cyst has been detected. However, more work,

creativity, and translatable development of new tools are required to

produce the desired outcomes for patients. Modifications to assay

platforms, or preanalytical steps paired with assays that consume

less sample volume, will undeniably expand the utility of limited

clinical samples. There are also other approaches seeking to use
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multimodal analyses to diagnose pancreatic cysts (47, 73). It is

undeniable that incorporation of standard clinical data from

imaging and cytology into biomarker analyses provides the best

diagnostic resolution for patients and clinicians. However, most of

the work described here identifies patients who can be ruled out

from further consideration. It is the remaining mucinous pancreatic

cyst population that requires attention moving forward. Marker

identification and translation, combination panels, and

collaboration will be vital in addressing the unmet need for

dysplasia grading in pancreatic cyst fluid.
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