722 research outputs found
Noise and Measurement Efficiency of a Partially Coherent Mesoscopic Detector
We study the noise properties and efficiency of a mesoscopic resonant-level
conductor which is used as a quantum detector, in the regime where transport
through the level is only partially phase coherent. We contrast models in which
detector incoherence arises from escape to a voltage probe, versus those in
which it arises from a random time-dependent potential. Particular attention is
paid to the back-action charge noise of the system. While the average detector
current is similar in all models, we find that its noise properties and
measurement efficiency are sensitive both to the degree of coherence and to the
nature of the dephasing source. Detector incoherence prevents quantum limited
detection, except in the non-generic case where the source of dephasing is not
associated with extra unobserved information. This latter case can be realized
in a version of the voltage probe model.Comment: 15 pages, 5 figures; revised dicussion of voltage probe model
Heat kernel and number theory on NC-torus
The heat trace asymptotics on the noncommutative torus, where generalized
Laplacians are made out of left and right regular representations, is fully
determined. It turns out that this question is very sensitive to the
number-theoretical aspect of the deformation parameters. The central condition
we use is of a Diophantine type. More generally, the importance of number
theory is made explicit on a few examples. We apply the results to the spectral
action computation and revisit the UV/IR mixing phenomenon for a scalar theory.
Although we find non-local counterterms in the NC theory on \T^4, we
show that this theory can be made renormalizable at least at one loop, and may
be even beyond
The Schrodinger Wave Functional and Vacuum State in Curved Spacetime II. Boundaries and Foliations
In a recent paper, general solutions for the vacuum wave functionals in the
Schrodinger picture were given for a variety of classes of curved spacetimes.
Here, we describe a number of simple examples which illustrate how the presence
of spacetime boundaries influences the vacuum wave functional and how physical
quantities are independent of the choice of spacetime foliation used in the
Schrodinger approach despite the foliation dependence of the wave functionals
themselves.Comment: 26 pages, 4 figures, LATE
Glassy Phase Transition and Stability in Black Holes
Black hole thermodynamics, confined to the semi-classical regime, cannot
address the thermodynamic stability of a black hole in flat space. Here we show
that inclusion of correction beyond the semi-classical approximation makes a
black hole thermodynamically stable. This stability is reached through a phase
transition. By using Ehrenfest's scheme we further prove that this is a glassy
phase transition with a Prigogine-Defay ratio close to 3. This value is well
placed within the desired bound (2 to 5) for a glassy phase transition. Thus
our analysis indicates a very close connection between the phase transition
phenomena of a black hole and glass forming systems. Finally, we discuss the
robustness of our results by considering different normalisations for the
correction term.Comment: v3, minor changes over v2, references added, LaTeX-2e, 18 pages, 3 ps
figures, to appear in Eour. Phys. Jour.
Selective quantum evolution of a qubit state due to continuous measurement
We consider a two-level quantum system (qubit) which is continuously measured
by a detector. The information provided by the detector is taken into account
to describe the evolution during a particular realization of measurement
process. We discuss the Bayesian formalism for such ``selective'' evolution of
an individual qubit and apply it to several solid-state setups. In particular,
we show how to suppress the qubit decoherence using continuous measurement and
the feedback loop.Comment: 15 pages (including 9 figures
Not to normal order - Notes on the kinetic limit for weakly interacting quantum fluids
The derivation of the Nordheim-Boltzmann transport equation for weakly
interacting quantum fluids is a longstanding problem in mathematical physics.
Inspired by the method developed to handle classical dilute gases, a
conventional approach is the use of the BBGKY hierarchy for the time-dependent
reduced density matrices. In contrast, our contribution is motivated by the
kinetic theory of the weakly nonlinear Schrodinger equation. The main
observation is that the results obtained in the latter context carry over
directly to weakly interacting quantum fluids provided one does not insist on
normal order in the Duhamel expansion. We discuss the term by term convergence
of the expansion and the equilibrium time correlation .Comment: 43 pages, corrected typos, updated assumptions in sec.
Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV
We present a search for the production of neutral Higgs bosons decaying into
tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The
data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by
the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the
95% C.L. on the product of production cross section and branching ratio for a
scalar resonance decaying into tautau pairs, and we then interpret these limits
as limits on the production of Higgs bosons in the minimal supersymmetric
standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL
Measurement of the photon-jet production differential cross section in collisions at \sqrt{s}=1.96~\TeV
We present measurements of the differential cross section dsigma/dpT_gamma
for the inclusive production of a photon in association with a b-quark jet for
photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for
photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is
the photon transverse momentum. The b-quark jets are required to have pT>15 GeV
and rapidity |y_jet| < 1.5. The results are based on data corresponding to an
integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the
Fermilab Tevatron Collider at sqrt(s)=1.96 TeV. The measured cross
sections are compared with next-to-leading order perturbative QCD calculations
using different sets of parton distribution functions as well as to predictions
based on the kT-factorization QCD approach, and those from the Sherpa and
Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.
Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wgamma production in pp-bar collisions at sqrt{s}=1.96 TeV
We present final searches of the anomalous gammaWW and ZWW trilinear gauge
boson couplings from WW and WZ production using lepton plus dijet final states
and a combination with results from Wgamma, WW, and WZ production with leptonic
final states. The analyzed data correspond to up to 8.6/fb of integrated
luminosity collected by the D0 detector in pp-bar collisions at sqrt{s}=1.96
TeV. We set the most stringent limits at a hadron collider to date assuming two
different relations between the anomalous coupling parameters
Delta\kappa_\gamma, lambda, and Delta g_1^Z for a cutoff energy scale Lambda=2
TeV. The combined 68% C.L. limits are -0.057<Delta\kappa_\gamma<0.154,
-0.015<lambda<0.028, and -0.008<Delta g_1^Z<0.054 for the LEP parameterization,
and -0.007<Delta\kappa<0.081 and -0.017<lambda<0.028 for the equal couplings
parameterization. We also present the most stringent limits of the W boson
magnetic dipole and electric quadrupole moments.Comment: 10 pages, 5 figures, submitted to PL
Measurement of three-jet differential cross sections d sigma-3jet / d M-3jet in p anti-p collisions at sqrt(s)=1.96 TeV
We present the first measurement of the inclusive three-jet differential
cross section as a function of the invariant mass of the three jets with the
largest transverse momenta in an event in p anti-p collisions at sqrt(s) = 1.96
TeV. The measurement is made in different rapidity regions and for different
jet transverse momentum requirements and is based on a data set corresponding
to an integrated luminosity of 0.7 fb^{-1} collected with the D0 detector at
the Fermilab Tevatron Collider. The results are used to test the three-jet
matrix elements in perturbative QCD calculations at next-to-leading order in
the strong coupling constant. The data allow discrimination between
parametrizations of the parton distribution functions of the proton.Comment: 10 pages, 4 figures, 2 tables, submitted to Phys. Lett. B, corrected
chi2 values for NNPD
- …