48 research outputs found

    Galaxy and Mass Assembly (GAMA): the effect of close interactions on star formation in galaxies

    Get PDF
    The modification of star formation (SF) in galaxy interactions is a complex process, with SF observed to be both enhanced in major mergers and suppressed in minor pair interactions. Such changes likely to arise on short time-scales and be directly related to the galaxy–galaxy interaction time. Here we investigate the link between dynamical phase and direct measures of SF on different time-scales for pair galaxies, targeting numerous star- formation rate (SFR) indicators and comparing to pair separation, individual galaxy mass and pair mass ratio. We split our sample into the higher (primary) and lower (secondary) mass galaxies in each pair and find that SF is indeed enhanced in all primary galaxies but suppressed in secondaries of minor mergers. We find that changes in SF of primaries are consistent in both major and minor mergers, suggesting that SF in the more massive galaxy is agnostic to pair mass ratio. We also find that SF is enhanced/suppressed more strongly for short-duration SFR indicators (e.g. Hα), highlighting recent changes to SF in these galaxies, which are likely to be induced by the interaction. We propose a scenario where the lower mass galaxy has its SF suppressed by gas heating or stripping, while the higher mass galaxy has its SF enhanced, potentially by tidal gas turbulence and shocks. This is consistent with the seemingly contradictory observations for both SF suppression and enhancement in close pairs

    Galaxy And Mass Assembly (GAMA): A forensic SED reconstruction of the cosmic star-formation history and metallicity evolution by galaxy type

    Get PDF
    We apply the spectral energy distribution-fitting code ProSpect to multiwavelength imaging for ∼\sim7,000 galaxies from the GAMA survey at z<0.06z<0.06, in order to extract their star-formation histories. We combine a parametric description of the star formation history with a closed-box evolution of metallicity where the present-day gas-phase metallicity of the galaxy is a free parameter. We show with this approach that we are able to recover the observationally-determined cosmic star formation history (CSFH), an indication that stars are being formed in the correct epoch of the Universe, on average, for the manner in which we are conducting SED fitting. We also show the contribution to the CSFH of galaxies of different present-day visual morphologies, and stellar masses. This analysis suggests that half of the mass in present-day elliptical galaxies was in place 11 Gyr ago, whereas in other morphological types the stellar mass formed later, up to 6 Gyr ago for present-day irregular galaxies. Similarly, the most massive galaxies in our sample were shown to have formed half their stellar mass by 10.5 Gyr ago, whereas the least massive galaxies formed half their stellar mass as late as 4 Gyr ago (the well-known effect of "galaxy downsizing"). Finally, our metallicity approach allows us to follow the average evolution in gas-phase metallicity for populations of galaxies, and extract the evolution of the cosmic metal mass density in stars and in gas, producing results in broad agreement with observations of metal densities in the Universe

    Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley

    Get PDF
    We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and onto the red sequence. We select GAMA survey galaxies with 10.25<log(M∗/M⊙)<10.7510.25<{\rm log}(M_*/M_\odot)<10.75 and z<0.2z<0.2 classified according to their intrinsic u∗−r∗u^*-r^* colour. From single component S\'ersic fits, we find that the stellar mass-sensitive K−K-band profiles of red and green galaxy populations are very similar, while g−g-band profiles indicate more disk-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disk components and that the blue to red evolution is driven by colour change in the disk. Together, these strongly suggest that galaxies evolve from blue to red through secular disk fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical timescale for traversing the green valley ∼1−2\sim 1-2~Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a r\^ole in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disk galaxies that are insufficiently supplied with gas to maintain previous levels of disk star formation, eventually attaining passive colours. No single event is needed quench their star formation

    Galaxy And Mass Assembly (GAMA): growing up in a bad neighbourhood - how do low-mass galaxies become passive?

    Get PDF
    Both theoretical predictions and observations of the very nearby Universe suggest that low-mass galaxies (log10_{10}[M∗_{*}/M⊙_{\odot}]<9.5) are likely to remain star-forming unless they are affected by their local environment. To test this premise, we compare and contrast the local environment of both passive and star-forming galaxies as a function of stellar mass, using the Galaxy and Mass Assembly survey. We find that passive fractions are higher in both interacting pair and group galaxies than the field at all stellar masses, and that this effect is most apparent in the lowest mass galaxies. We also find that essentially all passive log10_{10}[M∗_{*}/M⊙_{\odot}]<8.5 galaxies are found in pair/group environments, suggesting that local interactions with a more massive neighbour cause them to cease forming new stars. We find that the effects of immediate environment (local galaxy-galaxy interactions) in forming passive systems increases with decreasing stellar mass, and highlight that this is potentially due to increasing interaction timescales giving sufficient time for the galaxy to become passive via starvation. We then present a simplistic model to test this premise, and show that given our speculative assumptions, it is consistent with our observed results

    Galaxy And Mass Assembly (GAMA): the Stellar Mass Budget by Galaxy Type

    Get PDF
    We report an expanded sample of visual morphological classifications from the Galaxy and Mass Assembly (GAMA) survey phase two, which now includes 7,556 objects (previously 3,727 in phase one). We define a local (z <0.06) sample and classify galaxies into E, S0-Sa, SB0-SBa, Sab-Scd, SBab-SBcd, Sd-Irr, and "little blue spheroid" types. Using these updated classifications, we derive stellar mass function fits to individual galaxy populations divided both by morphological class and more general spheroid- or disk-dominated categories with a lower mass limit of log(Mstar/Msun) = 8 (one dex below earlier morphological mass function determinations). We find that all individual morphological classes and the combined spheroid-/bulge-dominated classes are well described by single Schechter stellar mass function forms. We find that the total stellar mass densities for individual galaxy populations and for the entire galaxy population are bounded within our stellar mass limits and derive an estimated total stellar mass density of rho_star = 2.5 x 10^8 Msun Mpc^-3 h_0.7, which corresponds to an approximately 4% fraction of baryons found in stars. The mass contributions to this total stellar mass density by galaxies that are dominated by spheroidal components (E and S0-Sa classes) and by disk components (Sab-Scd and Sd-Irr classes) are approximately 70% and 30%, respectively

    Galaxy and Mass Assembly: luminosity and stellar mass functions in GAMA groups

    Get PDF
    How do galaxy properties (such as stellar mass, luminosity, star formation rate, and morphology) and their evolution depend on the mass of their host dark matter halo? Using the Galaxy and Mass Assembly (GAMA) group catalogue, we address this question by exploring the dependence on host halo mass of the luminosity function (LF) and stellar mass function (SMF) for grouped galaxies subdivided by colour, morphology and central/satellite. We find that spheroidal galaxies in particular dominate the bright and massive ends of the LF and SMF, respectively. More massive haloes host more massive and more luminous central galaxies. The satellite LF and SMF respectively show a systematic brightening of characteristic magnitude, and increase in characteristic mass, with increasing halo mass. In contrast to some previous results, the faint-end and low-mass slopes show little systematic dependence on halo mass. Semi-analytic models and simulations show similar or enhanced dependence of central mass and luminosity on halo mass. Faint and low-mass simulated satellite galaxies are remarkably independent of halo mass, but the most massive satellites are more common in more massive groups. In the first investigation of low-redshift LF and SMF evolution in group environments, we find that the red/blue ratio of galaxies in groups has increased since redshift z≈0.3z \approx 0.3 relative to the field population. This observation strongly suggests that quenching of star formation in galaxies as they are accreted into galaxy groups is a significant and ongoing process

    Galaxy And Mass Assembly (GAMA): mass-size relations of z < 0.1 galaxies subdivided by Sersic index, colour and morphology

    Get PDF
    We use data from the Galaxy And Mass Assembly (GAMA) survey in the redshift range 0.01 < z < 0.1 (8399 galaxies in g to Ks bands) to derive the stellar mass–half-light radius relations for various divisions of ‘early’- and ‘late’-type samples. We find that the choice of division between early and late (i.e. colour, shape, morphology) is not particularly critical; however, the adopted mass limits and sample selections (i.e. the careful rejection of outliers and use of robust fitting methods) are important. In particular, we note that for samples extending to low stellar mass limits (<10 10 M ⊙ ) the Sérsic index bimodality, evident for high-mass systems, becomes less distinct and no-longer acts as a reliable separator of early- and late-type systems. The final set of stellar mass–half-light radius relations are reported for a variety of galaxy population subsets in 10 bands (ugrizZY JHKs) and are intended to provide a comprehensive low-z benchmark for the many ongoing high-z studies. Exploring the variation of the stellar mass–half-light radius relations with wavelength, we confirm earlier findings that galaxies appear more compact at longer wavelengths albeit at a smaller level than previously noted: at 10 10 M ⊙ both spiral systems and ellipticals show a decrease in size of 13 per cent from g to Ks (which is near linear in log wavelength). Finally, we note that the sizes used in this work are derived from 2D Sérsic light profile fitting (using galfit3), i.e. elliptical semimajor half-light radii, improving on earlier low-z benchmarks based on circular apertures

    Galaxy And Mass Assembly (GAMA): mass-size relations of z < 0.1 galaxies subdivided by Sersic index, colour and morphology

    Get PDF
    We use data from the Galaxy And Mass Assembly (GAMA) survey in the redshift range 0.01 < z < 0.1 (8399 galaxies in g to Ks bands) to derive the stellar mass–half-light radius relations for various divisions of ‘early’- and ‘late’-type samples. We find that the choice of division between early and late (i.e. colour, shape, morphology) is not particularly critical; however, the adopted mass limits and sample selections (i.e. the careful rejection of outliers and use of robust fitting methods) are important. In particular, we note that for samples extending to low stellar mass limits (<10 10 M ⊙ ) the Sérsic index bimodality, evident for high-mass systems, becomes less distinct and no-longer acts as a reliable separator of early- and late-type systems. The final set of stellar mass–half-light radius relations are reported for a variety of galaxy population subsets in 10 bands (ugrizZY JHKs) and are intended to provide a comprehensive low-z benchmark for the many ongoing high-z studies. Exploring the variation of the stellar mass–half-light radius relations with wavelength, we confirm earlier findings that galaxies appear more compact at longer wavelengths albeit at a smaller level than previously noted: at 10 10 M ⊙ both spiral systems and ellipticals show a decrease in size of 13 per cent from g to Ks (which is near linear in log wavelength). Finally, we note that the sizes used in this work are derived from 2D Sérsic light profile fitting (using galfit3), i.e. elliptical semimajor half-light radii, improving on earlier low-z benchmarks based on circular apertures

    Galaxy And Mass Assembly (GAMA): M-star-R-e relations of z=0 bulges, discs and spheroids

    Get PDF
    We perform automated bulge + disc decomposition on a sample of ~7500 galaxies from the Galaxy And Mass Assembly (GAMA) survey in the redshift range of 0.002<z<0.06 using SIGMA, a wrapper around GALFIT3. To achieve robust profile measurements we use a novel approach of repeatedly fitting the galaxies, varying the input parameters to sample a large fraction of the input parameter space. Using this method we reduce the catastrophic failure rate significantly and verify the confidence in the fit independently of \chi^2 Additionally, using the median of the final fitting values and the 16^{th}$ and 84^{th} percentile produces more realistic error estimates than those provided by GALFIT, which are known to be underestimated. We use the results of our decompositions to analyse the stellar mass - half-light radius relations of bulges, discs and spheroids. We further investigate the association of components with a parent disc or elliptical relation to provide definite z=0 disc and spheroid M-star-R-e} relations. We conclude by comparing our local disc and spheroid M-star-R-e} to simulated data from EAGLE and high redshift data from CANDELS-UDS. We show the potential of using the mass-size relation to study galaxy evolution in both cases but caution that for a fair comparison all data sets need to be processed and analysed in the same manner

    4MOST Consortium Survey 7: Wide-Area VISTA Extragalactic Survey (WAVES)

    Get PDF
    WAVES is designed to study the growth of structure, mass and energy on scales of ~1 kpc to ~10 Mpc over a 7 Gyr timeline. On the largest length scales (1-10 Mpc) WAVES will measure the structures defined by groups, filaments and voids, and their emergence over recent times. Comparisons with bespoke numerical simulations will be used to confirm, refine or refute the Cold Dark Matter paradigm. At intermediate length scales (10 kpc-1 Mpc) WAVES will probe the size and mass distribution of galaxy groups, as well as the galaxy merger rates, in order to directly measure the assembly of dark matter halos and stellar mass. On the smallest length scales (1-10 kpc) WAVES will provide accurate distance and environmental measurements to complement high-resolution space-based imaging to study the mass and size evolution of galaxy bulges, discs and bars. In total, WAVES will provide a panchromatic legacy dataset of ~1.6 million galaxies, firmly linking the very low (z<0.1z < 0.1) and intermediate (z∼0.8z \sim 0.8) redshift Universe
    corecore