1,002 research outputs found

    Where do perturbative and non-perturbative QCD meet?

    Get PDF
    We computed the static potential and Wilson loops to O(α2)O(\alpha^2) in perturbation theory for different lattice quark and gluon actions. In general, we find short distance lattice data to be well described by ``boosted perturbation theory''. For Wilson-type fermions at present-day quark masses and lattice spacings agreement within 10% between measured ``β\beta-shifts'' and those predicted by perturbation theory is found. We comment on prospects for a determination of the real world QCD running coupling.Comment: 3 pages, 4 figures, Talk at Lattice 2001 in renormalisation and improvement sessio

    Mass-Transport Models with Multiple-Chipping Processes

    Get PDF
    We study mass-transport models with multiple-chipping processes. The rates of these processes are dependent on the chip size and mass of the fragmenting site. In this context, we consider k-chip moves (where k = 1, 2, 3, ....); and combinations of 1-chip, 2-chip and 3-chip moves. The corresponding mean-field (MF) equations are solved to obtain the steady-state probability distributions, P (m) vs. m. We also undertake Monte Carlo (MC) simulations of these models. The MC results are in excellent agreement with the corresponding MF results, demonstrating that MF theory is exact for these models.Comment: 18 pages, 4 figures, To appear in European Physical Journal

    Asymptotic scaling of the gluon propagtor on the lattice

    Get PDF
    We pursue the study of the high energy behaviour of the gluon propagator on the lattice in the Landau gauge in the flavorless case (n_f=0). It was shown in a precedin g paper that the gluon propagator did not reach three-loop asymptotic scaling at an energy scale as high as 5 GeV. Our present high statistics analysis includes also a simulation at β=6.8\beta=6.8 (a0.03a\simeq 0.03 fm), which allows to reach μ10\mu \simeq 10 GeV. Special care has been devoted to the finite lattice-spacing artifacts as well as to the finite volume effects, the latter being acute at β=6.8\beta=6.8 where the volume is bounded by technical limits. Our main conclusion is a strong evidence that the gluon propagator has reached three-loop asymptotic scaling, at μ\mu ranging from 5.6 GeV to 9.5 GeV. We buttress up this conclusion on several demanding criteria of asymptoticity, including scheme independence. Our fit in the 5.6 GeV to 9.5 GeV window yields ΛMSˉ=319±1420+10\Lambda^{\bar{{\rm MS}}} = 319 \pm 14 ^{+10}_{-20} MeV, in good agreement with our previous result, ΛMSˉ=295±20\Lambda^{\bar{{\rm MS}}} = 295 \pm 20 MeV, obtained from the three gluon vertex, but it is significantly above the Schr\"odinger functional method estimate : 238±19238 \pm 19 MeV. The latter difference is not understood. Confirming our previous paper, we show that a fourth loop is necessary to fit the whole (2.8÷9.52.8 \div 9.5) GeV energy window.Comment: latex-file, 19 pgs., 6 fig

    Comparative Study of full QCD Hadron Spectrum and Static Quark Potential with Improved Actions

    Get PDF
    We investigate effects of action improvement on the light hadron spectrum and the static quark potential in two-flavor QCD for a11a^{-1} \approx 1 GeV and mPS/mV=0.70.9m_{PS}/m_V = 0.7-0.9. We compare a renormalization group improved action with the plaquette action for gluons, and the SW-clover action with the Wilson action for quarks. We find a significant improvement in the hadron spectrum by improving the quark action, while the gluon improvement is crucial for a rotationally invariant static potential. We also explore the region of light quark masses corresponding to mPS/mV0.4m_{PS}/m_V \geq 0.4 on a 2.7 fm lattice using the improved gauge and quark action. A flattening of the potential is not observed up to 2 fm.Comment: LaTeX, 35 pages, 22 eps figures, uses revtex and eps

    Charmonium Spectrum from Quenched Anisotropic Lattice QCD

    Get PDF
    We present a detailed study of the charmonium spectrum using anisotropic lattice QCD. We first derive a tree-level improved clover quark action on the anisotropic lattice for arbitrary quark mass. The heavy quark mass dependences of the improvement coefficients, i.e. the ratio of the hopping parameters ζ=Kt/Ks\zeta=K_t/K_s and the clover coefficients cs,tc_{s,t}, are examined at the tree level. We then compute the charmonium spectrum in the quenched approximation employing ξ=as/at=3\xi = a_s/a_t = 3 anisotropic lattices. Simulations are made with the standard anisotropic gauge action and the anisotropic clover quark action at four lattice spacings in the range asa_s=0.07-0.2 fm. The clover coefficients cs,tc_{s,t} are estimated from tree-level tadpole improvement. On the other hand, for the ratio of the hopping parameters ζ\zeta, we adopt both the tree-level tadpole-improved value and a non-perturbative one. We calculate the spectrum of S- and P-states and their excitations. The results largely depend on the scale input even in the continuum limit, showing a quenching effect. When the lattice spacing is determined from the 1P1S1P-1S splitting, the deviation from the experimental value is estimated to be \sim30% for the S-state hyperfine splitting and \sim20% for the P-state fine structure. Our results are consistent with previous results at ξ=2\xi = 2 obtained by Chen when the lattice spacing is determined from the Sommer scale r0r_0. We also address the problem with the hyperfine splitting that different choices of the clover coefficients lead to disagreeing results in the continuum limit.Comment: 43 pages, 49 eps figures, revtex; minor changes, version to appear in Physical Review

    Preliminary Calculation of αs\alpha_s from Green Functions with Dynamical Quarks

    Full text link
    We present preliminary results on the computation of the QCD running coupling constant in the MOM~\widetilde{MOM} scheme and Landau gauge with two flavours of dynamical Wilson quarks. Gluon momenta range up to about 7 GeV (β=\beta = 5.6, 5.8 and 6.0) with a constant dynamical-quark mass. This range already allows to exhibit some evidence for a sizable 1/μ21/\mu^2 correction to the asymptotic behaviour, as in the quenched approximation, although a fit without power corrections is still possible with a reasonable χ2\chi^2. Following the conclusions of our quenched study, we take into account 1/μ21/\mu^2 correction to the asymptotic behaviour. We find ΛMSˉNf=2=264(27)MeV×[a1(5.6,0.1560)/2.19GeV]\Lambda_{\rm \bar{MS}}^{N_f=2} = 264(27) {\rm MeV} \times [{a^{-1}(5.6,0.1560)}/{2.19 {\rm GeV}}] , which leads to αs(MZ)=0.113(3)(4)\alpha_s(M_Z) = 0.113(3)(4). The latter result has to be taken as a preliminary indication rather than a real prediction in view of the systematic errors still to be controlled. Still, being two sigmas below the experimental result makes it very encouraging.Comment: 14 pages, 3 figs., 2 tabs., revte

    Adjoint "quarks" on coarse anisotropic lattices: Implications for string breaking in full QCD

    Get PDF
    A detailed study is made of four dimensional SU(2) gauge theory with static adjoint ``quarks'' in the context of string breaking. A tadpole-improved action is used to do simulations on lattices with coarse spatial spacings asa_s, allowing the static potential to be probed at large separations at a dramatically reduced computational cost. Highly anisotropic lattices are used, with fine temporal spacings ata_t, in order to assess the behavior of the time-dependent effective potentials. The lattice spacings are determined from the potentials for quarks in the fundamental representation. Simulations of the Wilson loop in the adjoint representation are done, and the energies of magnetic and electric ``gluelumps'' (adjoint quark-gluon bound states) are calculated, which set the energy scale for string breaking. Correlators of gauge-fixed static quark propagators, without a connecting string of spatial links, are analyzed. Correlation functions of gluelump pairs are also considered; similar correlators have recently been proposed for observing string breaking in full QCD and other models. A thorough discussion of the relevance of Wilson loops over other operators for studies of string breaking is presented, using the simulation results presented here to support a number of new arguments.Comment: 22 pages, 14 figure

    Time-of-arrival distributions from position-momentum and energy-time joint measurements

    Get PDF
    The position-momentum quasi-distribution obtained from an Arthurs and Kelly joint measurement model is used to obtain indirectly an ``operational'' time-of-arrival (TOA) distribution following a quantization procedure proposed by Kocha\'nski and W\'odkiewicz [Phys. Rev. A 60, 2689 (1999)]. This TOA distribution is not time covariant. The procedure is generalized by using other phase-space quasi-distributions, and sufficient conditions are provided for time covariance that limit the possible phase-space quasi-distributions essentially to the Wigner function, which, however, provides a non-positive TOA quasi-distribution. These problems are remedied with a different quantization procedure which, on the other hand, does not guarantee normalization. Finally an Arthurs and Kelly measurement model for TOA and energy (valid also for arbitrary conjugate variables when one of the variables is bounded from below) is worked out. The marginal TOA distribution so obtained, a distorted version of Kijowski's distribution, is time covariant, positive, and normalized

    Integrating group Delphi, fuzzy logic and expert systems for marketing strategy development:the hybridisation and its effectiveness

    Get PDF
    A hybrid approach for integrating group Delphi, fuzzy logic and expert systems for developing marketing strategies is proposed in this paper. Within this approach, the group Delphi method is employed to help groups of managers undertake SWOT analysis. Fuzzy logic is applied to fuzzify the results of SWOT analysis. Expert systems are utilised to formulate marketing strategies based upon the fuzzified strategic inputs. In addition, guidelines are also provided to help users link the hybrid approach with managerial judgement and intuition. The effectiveness of the hybrid approach has been validated with MBA and MA marketing students. It is concluded that the hybrid approach is more effective in terms of decision confidence, group consensus, helping to understand strategic factors, helping strategic thinking, and coupling analysis with judgement, etc

    Rational Design of Mechanism-Based Inhibitors and Activity-Based Probes for the Identification of Retaining α-l-Arabinofuranosidases

    Get PDF
    Identifying and characterizing the enzymes responsible for an observed activity within a complex eukaryotic catabolic system remains one of the most significant challenges in the study of biomass-degrading systems. The debranching of both complex hemicellulosic and pectinaceous polysaccharides requires the production of α-l-arabinofuranosidases among a wide variety of coexpressed carbohydrate-active enzymes. To selectively detect and identify α-l-arabinofuranosidases produced by fungi grown on complex biomass, potential covalent inhibitors and probes which mimic α-l-arabinofuranosides were sought. The conformational free energy landscapes of free α-l-arabinofuranose and several rationally designed covalent α-l-arabinofuranosidase inhibitors were analyzed. A synthetic route to these inhibitors was subsequently developed based on a key Wittig-Still rearrangement. Through a combination of kinetic measurements, intact mass spectrometry, and structural experiments, the designed inhibitors were shown to efficiently label the catalytic nucleophiles of retaining GH51 and GH54 α-l-arabinofuranosidases. Activity-based probes elaborated from an inhibitor with an aziridine warhead were applied to the identification and characterization of α-l-arabinofuranosidases within the secretome of A. niger grown on arabinan. This method was extended to the detection and identification of α-l-arabinofuranosidases produced by eight biomass-degrading basidiomycete fungi grown on complex biomass. The broad applicability of the cyclophellitol-derived activity-based probes and inhibitors presented here make them a valuable new tool in the characterization of complex eukaryotic carbohydrate-degrading systems and in the high-throughput discovery of α-l-arabinofuranosidases
    corecore