4,204 research outputs found

    Loneliness in autistic adults: A systematic review

    Get PDF
    In this systematic review, we examined quantitative, qualitative and mixed methods studies on loneliness in autistic adults. A total of 1460 articles were identified, and 34 of these met inclusion criteria. Results demonstrated that (1) there is a paucity of qualitative data providing first-hand descriptions of loneliness from autistic adults; (2) few empirical studies have used reliable/valid measures of loneliness developed specifically for autistic adults, and in just one study was a measure of loneliness developed for, and validated in, autistic adults; (3) the collective dimension of loneliness (i.e. belonging in society) has been described by autistic adults, yet has not been investigated as frequently as the intimate (i.e. romantic relationships) or relational (i.e. friend/family relationships) dimensions of loneliness; (4) the factors associated with increased loneliness in autistic adults include autistic characteristics, anxiety, depression and suicidal ideation, negative experiences and learned helplessness, a lack of autism understanding and acceptance, sensory avoidance, camouflaging and unemployment; and (5) the factors associated with decreased loneliness in autistic adults include having relationships, participation in social skill interventions and/or experiencing fewer difficulties with social skills, positive views and acceptance of oneself, being female and time spent engaging in activities (e.g. online gaming). Directions for future research are considered

    Conservation of Nonsense-Mediated mRNA Decay Complex Components Throughout Eukaryotic Evolution

    Get PDF
    Nonsense-mediated mRNA decay (NMD) is an essential eukaryotic process regulating transcript quality and abundance, and is involved in diverse processes including brain development and plant defenses. Although some of the NMD machinery is conserved between kingdoms, little is known about its evolution. Phosphorylation of the core NMD component UPF1 is critical for NMD and is regulated in mammals by the SURF complex (UPF1, SMG1 kinase, SMG8, SMG9 and eukaryotic release factors). However, since SMG1 is reportedly missing from the genomes of fungi and the plant Arabidopsis thaliana, it remains unclear how UPF1 is activated outside the metazoa. We used comparative genomics to determine the conservation of the NMD pathway across eukaryotic evolution. We show that SURF components are present in all major eukaryotic lineages, including fungi, suggesting that in addition to UPF1 and SMG1, SMG8 and SMG9 also existed in the last eukaryotic common ancestor, 1.8 billion years ago. However, despite the ancient origins of the SURF complex, we also found that SURF factors have been independently lost across the Eukarya, pointing to genetic buffering within the essential NMD pathway. We infer an ancient role for SURF in regulating UPF1, and the intriguing possibility of undiscovered NMD regulatory pathways

    The TOPLESS corepressor regulates developmental switches in the bryophyte Physcomitrium patens that were critical for plant terrestrialisation

    Get PDF
    The plant-specific TOPLESS (TPL) family of transcriptional corepressors is integral to multiple angiosperm developmental processes. Despite this, we know little about TPL function in other plants. To address this gap, we investigated the roles TPL plays in the bryophyte Physcomitrium patens, which diverged from angiosperms approximately 0.5 billion years ago. Although complete loss of PpTPL function is lethal, transgenic lines with reduced PpTPL activity revealed that PpTPLs are essential for two fundamental developmental switches in this plant: the transitions from basal photosynthetic filaments (chloronemata) to specialised foraging filaments (caulonemata) and from two-dimensional (2D) to three-dimensional (3D) growth. Using a transcriptomics approach, we integrated PpTPL into the regulatory network governing 3D growth and we propose that PpTPLs represent another important class of regulators that are essential for the 2D-to-3D developmental switch. Transcriptomics also revealed a previously unknown role for PpTPL in the regulation of flavonoids. Intriguingly, 3D growth and the formation of caulonemata were crucial innovations that facilitated the colonisation of land by plants, a major transformative event in the history of life on Earth. We conclude that TPL, which existed before the land plants, was co-opted into new developmental pathways, enabling phytoterrestrialisation and the evolution of land plants

    Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics

    Full text link
    In this philosophical paper, we explore computational and biological analogies to address the fine-tuning problem in cosmology. We first clarify what it means for physical constants or initial conditions to be fine-tuned. We review important distinctions such as the dimensionless and dimensional physical constants, and the classification of constants proposed by Levy-Leblond. Then we explore how two great analogies, computational and biological, can give new insights into our problem. This paper includes a preliminary study to examine the two analogies. Importantly, analogies are both useful and fundamental cognitive tools, but can also be misused or misinterpreted. The idea that our universe might be modelled as a computational entity is analysed, and we discuss the distinction between physical laws and initial conditions using algorithmic information theory. Smolin introduced the theory of "Cosmological Natural Selection" with a biological analogy in mind. We examine an extension of this analogy involving intelligent life. We discuss if and how this extension could be legitimated. Keywords: origin of the universe, fine-tuning, physical constants, initial conditions, computational universe, biological universe, role of intelligent life, cosmological natural selection, cosmological artificial selection, artificial cosmogenesis.Comment: 25 pages, Foundations of Science, in pres

    An XMM-Newton observation of the massive, relaxed galaxy cluster ClJ1226.9+3332 at z=0.89

    Get PDF
    A detailed X-ray analysis of an XMM-Newton observation of the high-redshift (z=0.89) galaxy cluster ClJ1226.9+3332 is presented. The X-ray temperature is found to be 11.5{+1.1}{-0.9}keV, the highest X-ray temperature of any cluster at z>0.6. In contrast to MS1054-0321, the only other very hot cluster currently known at z>0.8, ClJ1226.9+3332 features a relaxed X-ray morphology, and its high overall gas temperature is not caused by one or several hot spots. The system thus constitutes a unique example of a high redshift, high temperature, relaxed cluster, for which the usual hydrostatic equilibrium assumption, and the X-ray mass is most reliable. A temperature profile is constructed (for the first time at this redshift) and is consistent with the cluster being isothermal out to 45% of the virial radius. Within the virial radius (corresponding to a measured overdensity of a factor of 200), a total mass of (1.4+/-0.5)*10^15 M_solar is derived, with a gas mass fraction of 12+/-5%. The bolometric X-ray luminosity is (5.3+/-0.2)*10^45 erg/s. The probabilities of finding a cluster of this mass within the volume of the discovery X-ray survey are 8*10^{-5} for Omega_M=1 and 0.64 for Omega_M=0.3, making Omega_M=1 highly unlikely. The entropy profile suggests that entropy evolution is being observed. The metal abundance (of Z=0.33{+0.14}{-0.10} Z_solar), gas mass fraction, and gas distribution are consistent with those of local clusters; thus the bulk of the metals were in place by z=0.89.Comment: 13 pages, 8 figures. Accepted for publication in MNRA

    The problem of equilibration and the computation of correlation functions on a quantum computer

    Full text link
    We address the question of how a quantum computer can be used to simulate experiments on quantum systems in thermal equilibrium. We present two approaches for the preparation of the equilibrium state on a quantum computer. For both approaches, we show that the output state of the algorithm, after long enough time, is the desired equilibrium. We present a numerical analysis of one of these approaches for small systems. We show how equilibrium (time)-correlation functions can be efficiently estimated on a quantum computer, given a preparation of the equilibrium state. The quantum algorithms that we present are hard to simulate on a classical computer. This indicates that they could provide an exponential speedup over what can be achieved with a classical device.Comment: 25 pages LaTex + 8 figures; various additional comments, results and correction

    Young children, gender and the heterosexual matrix

    Get PDF
    In this paper I consider the adult focus of current mainstream gender theory. I relate this to how the concept of the heterosexual matrix originates in a social contract which excludes children from civil society. I argue that this exclusion is problematic both for theoretical reasons and from the perspective of children themselves. I start by discussing the nature of the heterosexual matrix and its foundations. I consider the implications for participation which arise from being named as a child, how that affects children’s attempts to claim participation in civil society, and how this is related to children’s naming of themselves as gendered. I then briefly consider the possibility that, because of their exclusion, children might also be considered to be exempt from the heterosexual matrix. However, I argue, there is considerable evidence that children are actively sexual beings who also work hard to claim inclusion in local practices of heterosexuality. I end by suggesting that there are three key reasons for this: that the discourses of normative sexuality provide children with a language to express sexual feelings; that self-insertion in the heterosexual matrix is a way for children to claim rights to participation; and that taking up heterosexual formations is a means whereby children can experience the power of naming themselves as part of the social world

    On the ability of spectroscopic SZ effect measurements to determine the temperature structure of galaxy clusters

    Full text link
    (abridged) We explore in this paper the ability of spatially resolved spectroscopic measurements of the SZ effect (SZE) to determine the temperature profile of galaxy clusters. We derive a general formalism for the thermal SZE in galaxy clusters with a non-uniform temperature profile that can be applied to both cool-core clusters and non-cool core cluster with an isothermal or non-isothermal temperature structure. We derive an inversion technique through which the electron distribution function can be extracted from spectroscopic SZE observations over a wide frequency range. We study the fitting procedure to extract the cluster temperature from a set of simulated spatially resolved spectroscopic SZE observations in different bands of the spectrum, from 100 to 450 GHz. The results of our analysis for three different cluster prototypes (A2199 with a low-temperature cool core, Perseus with a relatively high-temperature cool core, Ophiuchus with an isothermal temperature distribution) provide both the required precision of the SZE observations and the optimal frequency bands for a determination of the cluster temperature similar or better than that obtainable from X-ray observations. The precision of SZE-derived temperature is also discussed for the outer regions of clusters. We also study the possibility to extract, from our method, the parameters characterizing the non-thermal SZE spectrum of the relativistic plasma contained in the lobes of radio galaxies as well as the spectrum of relativistic electrons co-spatially distributed with the thermal plasma in clusters with non-thermal phenomena. We find that the next generation SZE experiments with spectroscopic capabilities can provide precise temperature distribution measurements (...)Comment: Submitted to Astronomy & Astrophysic

    Detecting Sunyaev-Zel'dovich clusters with PLANCK: I. Construction of all-sky thermal and kinetic SZ-maps

    Full text link
    All-sky thermal and kinetic Sunyaev-Zel'dovich (SZ) maps are presented for assessing how well the PLANCK-mission can find and characterise clusters of galaxies, especially in the presence of primary anisotropies of the cosmic microwave background (CMB) and various galactic and ecliptic foregrounds. The maps have been constructed from numerical simulations of structure formation in a standard LCDM cosmology and contain all clusters out to redshifts of z = 1.46 with masses exceeding 5e13 M_solar/h. By construction, the maps properly account for the evolution of cosmic structure, the halo-halo correlation function, the evolving mass function, halo substructure and adiabatic gas physics. The velocities in the kinetic map correspond to the actual density environment at the cluster positions. We characterise the SZ-cluster sample by measuring the distribution of angular sizes, the integrated thermal and kinetic Comptonisations, the source counts in the three relevant PLANCK-channels, and give the angular power-spectra of the SZ-sky. While our results are broadly consistent with simple estimates based on scaling relations and spherically symmetric cluster models, some significant differences are seen which may affect the number of cluster detectable by PLANCK.Comment: 14 pages, 16 figures, 3 tables, submitted to MNRAS, 05.Jul.200

    Quantum Computation with Quantum Dots

    Full text link
    We propose a new implementation of a universal set of one- and two-qubit gates for quantum computation using the spin states of coupled single-electron quantum dots. Desired operations are effected by the gating of the tunneling barrier between neighboring dots. Several measures of the gate quality are computed within a newly derived spin master equation incorporating decoherence caused by a prototypical magnetic environment. Dot-array experiments which would provide an initial demonstration of the desired non-equilibrium spin dynamics are proposed.Comment: 12 pages, Latex, 2 ps figures. v2: 20 pages (very minor corrections, substantial expansion), submitted to Phys. Rev.
    • …
    corecore