1,943 research outputs found

    Radiocarbon dating of methane and carbon dioxide evaded from a temperate peatland stream

    Get PDF
    Streams draining peatlands export large quantities of carbon in different chemical forms and are an important part of the carbon cycle. Radiocarbon (14C) analysis/dating provides unique information on the source and rate that carbon is cycled through ecosystems, as has recently been demonstrated at the air-water interface through analysis of carbon dioxide (CO2) lost from peatland streams by evasion (degassing). Peatland streams also have the potential to release large amounts of methane (CH4) and, though 14C analysis of CH4 emitted by ebullition (bubbling) has been previously reported, diffusive emissions have not. We describe methods that enable the 14C analysis of CH4 evaded from peatland streams. Using these methods, we investigated the 14C age and stable carbon isotope composition of both CH4 and CO2 evaded from a small peatland stream draining a temperate raised mire. Methane was aged between 1617-1987 years BP, and was much older than CO2 which had an age range of 303-521 years BP. Isotope mass balance modelling of the results indicated that the CO2 and CH4 evaded from the stream were derived from different source areas, with most evaded CO2 originating from younger layers located nearer the peat surface compared to CH4. The study demonstrates the insight that can be gained into peatland carbon cycling from a methodological development which enables dual isotope (14C and 13C) analysis of both CH4 and CO2 collected at the same time and in the same way

    Voluntary exercise can strengthen the circadian system in aged mice

    Get PDF
    Consistent daily rhythms are important to healthy aging according to studies linking disrupted circadian rhythms with negative health impacts. We studied the effects of age and exercise on baseline circadian rhythms and on the circadian system's ability to respond to the perturbation induced by an 8 h advance of the light:dark (LD) cycle as a test of the system's robustness. Mice (male, mPer2luc/C57BL/6) were studied at one of two ages: 3.5 months (n = 39) and >18 months (n = 72). We examined activity records of these mice under entrained and shifted conditions as well as mPER2::LUC measures ex vivo to assess circadian function in the suprachiasmatic nuclei (SCN) and important target organs. Age was associated with reduced running wheel use, fragmentation of activity, and slowed resetting in both behavioral and molecular measures. Furthermore, we observed that for aged mice, the presence of a running wheel altered the amplitude of the spontaneous firing rate rhythm in the SCN in vitro. Following a shift of the LD cycle, both young and aged mice showed a change in rhythmicity properties of the mPER2::LUC oscillation of the SCN in vitro, and aged mice exhibited longer lasting internal desynchrony. Access to a running wheel alleviated some age-related changes in the circadian system. In an additional experiment, we replicated the effect of the running wheel, comparing behavioral and in vitro results from aged mice housed with or without a running wheel (>21 months, n = 8 per group, all examined 4 days after the shift). The impact of voluntary exercise on circadian rhythm properties in an aged animal is a novel finding and has implications for the health of older people living with environmentally induced circadian disruption

    Which patients with heart failure should receive specialist palliative care?

    Full text link
    AIMS: We investigated which patients with heart failure (HF) should receive specialist palliative care (SPC) by first creating a definition of need for SPC in patients hospitalised with HF using patient-reported outcome measures (PROMs) and then testing this definition using the outcome of days alive and out of hospital (DAOH). We also evaluated which baseline variables predicted need for SPC and whether those with this need received SPC. METHODS AND RESULTS: PROMs assessing quality of life (QoL), symptoms, and mood were administered at baseline and every 4 months. SPC need was defined as persistently severe impairment of any PROM without improvement (or severe impairment immediately preceding death). We then tested whether need for SPC, so defined, was reflected in DAOH, a measure which combines length of stay, days of hospital re-admission, and days lost due to death. Of 272 patients recruited, 74 (27%) met the definition of SPC needs. These patients lived one third fewer DAOH than those without SPC need (and less than a quarter of QoL-adjusted DAOH). A Kansas City Cardiomyopathy Questionnaire (KCCQ) summary score of <29 identified patients who subsequently had SPC needs (area under receiver operating characteristic curve 0.78). Twenty-four per cent of patients with SPC needs actually received SPC (n = 18). CONCLUSIONS: A quarter of patients hospitalised with HF had a need for SPC and were identified by a low KCCQ score on admission. Those with SPC need spent many fewer DAOH and their DAOH were of significantly worse quality. Very few patients with SPC needs accessed SPC services

    Predictive feedback control and Fitts' law

    Get PDF
    Fitts’ law is a well established empirical formula, known for encapsulating the “speed-accuracy trade-off”. For discrete, manual movements from a starting location to a target, Fitts’ law relates movement duration to the distance moved and target size. The widespread empirical success of the formula is suggestive of underlying principles of human movement control. There have been previous attempts to relate Fitts’ law to engineering-type control hypotheses and it has been shown that the law is exactly consistent with the closed-loop step-response of a time-delayed, first-order system. Assuming only the operation of closed-loop feedback, either continuous or intermittent, this paper asks whether such feedback should be predictive or not predictive to be consistent with Fitts law. Since Fitts’ law is equivalent to a time delay separated from a first-order system, known control theory implies that the controller must be predictive. A predictive controller moves the time-delay outside the feedback loop such that the closed-loop response can be separated into a time delay and rational function whereas a non- predictive controller retains a state delay within feedback loop which is not consistent with Fitts’ law. Using sufficient parameters, a high-order non-predictive controller could approximately reproduce Fitts’ law. However, such high-order, “non-parametric” controllers are essentially empirical in nature, without physical meaning, and therefore are conceptually inferior to the predictive controller. It is a new insight that using closed-loop feedback, prediction is required to physically explain Fitts’ law. The implication is that prediction is an inherent part of the “speed-accuracy trade-off”

    The Relationship between Phytoplankton Distribution and Water Column Characteristics in North West European Shelf Sea Waters

    Get PDF
    Phytoplankton underpin the marine food web in shelf seas, with some species having properties that are harmful to human health and coastal aquaculture. Pressures such as climate change and anthropogenic nutrient input are hypothesized to influence phytoplankton community composition and distribution. Yet the primary environmental drivers in shelf seas are poorly understood. To begin to address this in North Western European waters, the phytoplankton community composition was assessed in light of measured physical and chemical drivers during the “Ellett Line” cruise of autumn 2001 across the Scottish Continental shelf and into adjacent open Atlantic waters. Spatial variability existed in both phytoplankton and environmental conditions, with clear differences not only between on and off shelf stations but also between different on shelf locations. Temperature/salinity plots demonstrated different water masses existed in the region. In turn, principal component analysis (PCA), of the measured environmental conditions (temperature, salinity, water density and inorganic nutrient concentrations) clearly discriminated between shelf and oceanic stations on the basis of DIN∶DSi ratio that was correlated with both salinity and temperature. Discrimination between shelf stations was also related to this ratio, but also the concentration of DIN and DSi. The phytoplankton community was diatom dominated, with multidimensional scaling (MDS) demonstrating spatial variability in its composition. Redundancy analysis (RDA) was used to investigate the link between environment and the phytoplankton community. This demonstrated a significant relationship between community composition and water mass as indexed by salinity (whole community), and both salinity and DIN∶DSi (diatoms alone). Diatoms of the Pseudo-nitzschia seriata group occurred at densities potentially harmful to shellfish aquaculture, with the potential for toxicity being elevated by the likelihood of DSi limitation of growth at most stations and depths

    Subtle changes in the flavour and texture of a drink enhance expectations of satiety

    Get PDF
    Background: The consumption of liquid calories has been implicated in the development of obesity and weight gain. Energy-containing drinks are often reported to have a weak satiety value: one explanation for this is that because of their fluid texture they are not expected to have much nutritional value. It is important to consider what features of these drinks can be manipulated to enhance their expected satiety value. Two studies investigated the perception of subtle changes in a drink’s viscosity, and the extent to which thick texture and creamy flavour contribute to the generation of satiety expectations. Participants in the first study rated the sensory characteristics of 16 fruit yogurt drinks of increasing viscosity. In study two, a new set of participants evaluated eight versions of the fruit yogurt drink, which varied in thick texture, creamy flavour and energy content, for sensory and hedonic characteristics and satiety expectations. Results: In study one, participants were able to perceive small changes in drink viscosity that were strongly related to the actual viscosity of the drinks. In study two, the thick versions of the drink were expected to be more filling and have a greater expected satiety value, independent of the drink’s actual energy content. A creamy flavour enhanced the extent to which the drink was expected to be filling, but did not affect its expected satiety. Conclusions: These results indicate that subtle manipulations of texture and creamy flavour can increase expectations that a fruit yogurt drink will be filling and suppress hunger, irrespective of the drink’s energy content. A thicker texture enhanced expectations of satiety to a greater extent than a creamier flavour, and may be one way to improve the anticipated satiating value of energy-containing beverages

    Trait-Like Brain Activity during Adolescence Predicts Anxious Temperament in Primates

    Get PDF
    Early theorists (Freud and Darwin) speculated that extremely shy children, or those with anxious temperament, were likely to have anxiety problems as adults. More recent studies demonstrate that these children have heightened responses to potentially threatening situations reacting with intense defensive responses that are characterized by behavioral inhibition (BI) (inhibited motor behavior and decreased vocalizations) and physiological arousal. Confirming the earlier impressions, data now demonstrate that children with this disposition are at increased risk to develop anxiety, depression, and comorbid substance abuse. Additional key features of anxious temperament are that it appears at a young age, it is a stable characteristic of individuals, and even in non-threatening environments it is associated with increased psychic anxiety and somatic tension. To understand the neural underpinnings of anxious temperament, we performed imaging studies with 18-fluoro-deoxyglucose (FDG) high-resolution Positron Emission Tomography (PET) in young rhesus monkeys. Rhesus monkeys were used because they provide a well validated model of anxious temperament for studies that cannot be performed in human children. Imaging the same animal in stressful and secure contexts, we examined the relation between regional metabolic brain activity and a trait-like measure of anxious temperament that encompasses measures of BI and pituitary-adrenal reactivity. Regardless of context, results demonstrated a trait-like pattern of brain activity (amygdala, bed nucleus of stria terminalis, hippocampus, and periaqueductal gray) that is predictive of individual phenotypic differences. Importantly, individuals with extreme anxious temperament also displayed increased activity of this circuit when assessed in the security of their home environment. These findings suggest that increased activity of this circuit early in life mediates the childhood temperamental risk to develop anxiety and depression. In addition, the findings provide an explanation for why individuals with anxious temperament have difficulty relaxing in environments that others perceive as non-stressful
    corecore