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Abstract Fitts’ law is a well established empirical formula,
known for encapsulating the “speed-accuracy trade-off”. For
discrete, manual movements from a starting location to a
target, Fitts’ law relates movement duration to the distance
moved and target size. The widespread empirical success of
the formula is suggestive of underlying principles of human
movement control. There have been previous attempts to re-
late Fitts’ law to engineering-type control hypotheses and it
has been shown that the law is exactly consistent with the
closed-loop step-response of a time-delayed, first-order sys-
tem. Assuming only the operation of closed-loop feedback,
either continuous or intermittent, this paper asks whether
such feedback should be predictive or not predictive to be
consistent with Fitts law. Since Fitts’ law is equivalent toa
time delay separated from a first-order system, known con-
trol theory implies that the controller must be predictive. A
predictive controller moves the time-delay outside the feed-
back loop such that the closed- loop response can be sepa-
rated into a time delay and rational function whereas a non-
predictive controller retains a state delay within feedback
loop which is not consistent with Fitts’ law. Using sufficient
parameters, a high-order non-predictive controller could ap-
proximately reproduce Fitts’ law. However, such high-order,
“non-parametric” controllers are essentially empirical in na-
ture, without physical meaning, and therefore are conceptu-
ally inferior to the predictive controller. It is a new insight
that using closed-loop feedback, prediction is required to
physically explain Fitts’ law. The implication is that predic-
tion is an inherent part of the “speed-accuracy trade-off”.
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1 Introduction

In the more than fifty years since its genesis, Fitts’ law (Fitts
1954), has entered the textbooks (Wickens and Hollands 2000)
as the standard empirical relationship between movement
time, distance moved and target size applicable to a wide
range of human movement situations (Plamondon and Alimi
1997, Table 1). It has also become a standard tool in the field
of Human Computer Interaction (Soukoreff and MacKenzie
2004).

The fact that Fitts’ law has such wide applicability im-
plies that any model of human motion control must account
for its predictions. As discussed by Plamondon and Alimi
(1997), and the numerous peer comments appended, there
are a number of hypotheses that are supported by Fitts’ law.
One of the hypotheses mentioned by Plamondon and Alimi
(1997, 2.1.3) is a simple feedback control model (attributed
to Connelly (1984)) which has also (apparently indepen-
dently) been noted by Phillips and Repperger (1997) and by
Cannon (1994). In particular, as discussed by Cannon (1994)
and by Jagacinski and Flach (2003), rewriting Fitts’ law us-
ing natural logarithms converts the two parameters of Fitts’
law into the two parameters of a the step response of a first
order system with time-constantT delayed by a timetd.

An early contribution to the engineering literature on
the feedback control oftime-delaysystems was provided
by Smith (1959) and extended by Marshall (1979). The key
result is thatpredictive feedback control of time-delay sys-
tems moves the time-delay outside the feedback loop. This
not only simplifies design, but gives a closed-loop system
where the time-delay is separated from the rest of the sys-
tem dynamics. Smith’s predictor has a number of drawbacks,
in particular the inability to control unstable systems, but
the basic idea was seminal and the problems can be over-
come (Gawthrop et al. 1996). Smith’s predictor has been
suggested as a basis for human movement control (Miall
et al. 1993b; Miall and Wolpert 1996; Wolpert et al. 1998)
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(although some doubts have been recently expressed (Mi-
all and Jackson 2006)). State-space based predictive control
was developed by Kleinman (1969) and appears in the text
book of Sage and Melsa (1971). Again, this has been sug-
gested as a basis for human motor control(McRuer 1980;
Wickens and Hollands 2000; Miall and Wolpert 1996; Van
Der Kooij et al. 1999).

However, even though Fitts’ law and predictive control
occur in the same chapter of the textbook of Wickens and
Hollands (2000), the use of the predictive control as a theo-
retical underpinning of Fitts’ law appears to have gone un-
noticed hitherto. This paper demonstrates the fact that the
feedback control-theoretical interpretation of Fitts’ law im-
plies that the underlying closed-loop feedback system has
the property that the time-delay is separated from the rest
of the system dynamics and thus Fitts’ law has a predictive
control interpretation.

Feedback control systems can be represented in either
state-space or transfer function form. Plamondon and Alimi
(1997) use a state-space formulation whereas Cannon (1994)
and Phillips and Repperger (1997) use a transfer function ap-
proach. The choice of representation is not a fundamental is-
sue but rather a matter of convenience: either representation
can be converted into the other. This paper uses a state-space
approach.

Similarly, there is a dichotomy between optimal control
and other control design methods. Optimal control is often
associated with state-space methods (Kwakernaak and Sivan
1972), but can equally well be associated with transfer-function
methods (Newton et al. 1957). However both optimal and
non-optimal approaches ultimately lead to the same form
of feedback control and, in some circumstances, a feedback
control system can be associated with an optimisation crite-
ria (Kalman 1964) even if it was not explicitly designed to
be optimal.

Open-loop optimal control with aminimum-variance end-
point criteria andsignal-dependentnoise has been consid-
ered by Harris and Wolpert (1998) and shown to give move-
ment trajectories consistent with Fitts’ law. It is not clear
how this result relates to theclosed-loopexplanation given
in this paper.

Continuous feedback is not the only possible feedback
mechanism associated with human movement. Craik (1947)
introduced the idea ofIntermittent Controlin the context of
human movement and more recent developments have been
reported (Beggs and Howarth 1972; Neilson et al. 1988; Mi-
all et al. 1993a; Doeringer and Hogan 1998; Neilson 1999;
Bhushan and Shadmehr 1999a; Lakie et al. 2003; Neilson
and Neilson 2005; Loram et al. 2006). Intermittency is re-
lated to control using a series of submovements (Meyer et al.
1990; Doeringer and Hogan 1998). Intermittent control has
also been discussed in the engineering literature (Ronco et al.
1999; Gawthrop and Wang 2006; Furuta et al. 2005). The
argument of this paper applies to both continuous and inter-
mittent feedback.

This paper is primarily concerned with the dichotomy
between predictive and non-predictive control. Assuming feed-

back control, this paper shows that predictive control is con-
sistent with Fitts’ law whereas non-predictive control is not.

The outline of the paper follows. Section 2 gives the con-
trol theoretic interpretation of Fitts’ law. Section 3 empha-
sises the implications of the result of Section 2 for feedback
control and gives the main results concerning predictive con-
trol in both continuous and intermittent form together with
an example. Section 4 concludes the paper.

2 Fitts’ law and Step response
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Fig. 1 Delayed first-order response (Time constantT = 0.5; time delay
td = 0.2). As expected, Fitts’ law gives an exact match to a first-order
+ delay response. The line has slopeT = 0.5 and crosses the vertical
axis attd = 0.2

This section brings together previous results (Connelly
1984; Cannon 1994; Phillips and Repperger 1997; Jagacin-
ski and Flach 2003) on the control theoretic interpretation
of Fitts’ law. Following, for example, Wickens and Hollands
(2000, chapter 10) Fitts’ model can be expressed as:

Tm = a+bId (1)

Id = log2
2D
W

(2)

whereTm is the movement time,D the distance moved,W
the target width andId the index of difficulty.a andb are the
two parameters which are adjusted to fit the data.
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Fig. 2 Delayed second-order response. This second order+delay re-
sponse approximates the first-order + delay response of Figure 1(a) be-
cause the second time constantT2 = 0.1 is small compared toT = 0.5.
In terms of the Fitts’ law interpretation, the estimated time constant
T = 0.5 is correct; the estimated delayt̂d ≈ td +T2.

It is a mathematical fact that log2x = α logex where the
constantα = log2e≈ 1.44. Hence (1) can be rewritten as:

Tm = A+BIe (3)

Ie = loge
2D
W

(4)

whereA = αa andB = αb. Of course, the two representa-
tions of Fitts’ law are equivalent. However, as discussed in
the literature, the use of log2 has information theory con-
notations whereas, as will be shown here, using natural (or
Naperian) logarithms (loge or ln) reveals the control-theoretic
aspects of Fitts’ law.

In control engineering, systems are often approximated
by a rational transfer function plus time delay model which
has the transfer function:

Y(s)
R(s)

= Gc(s) = e−std
bc(s)
ac(s)

(5)

wheree−std is the transfer function of a time-delaytd and
bc(s)
ac(s)

is the ratio of two polynomials ins: a rational transfer
function.

For exact consistency with Fitts’ law, we consider the
special case of (5) where

Gc(s) =
e−std

1+sT
(6)

where the two parameters are thetime-delay td and thetime-
constant T. Given a step reference signalr(t) of the form

r(t) =

{

0 t < 0
D t ≥ 0

(7)

the resultantstep-response y(t) is

y(t) =

{

0 t < td

D
(

1−e−
t−td

T

)

t ≥ td
(8)

Figure 1(a) shows such a response withD = 1, td = 0.2sec
andT = 0.5sec.

Suppose that this step response represents movement to-
wards a target of widthW centred atD. Then, given the
monotonic nature of the step response, the target is hit when
y = D− W

2 which, from (6) occurs whent = Tm where

W
2

= De−
Tm−td

T (9)

andTm is the movement time. Taking natural logarithms and
rearranging:

Tm = td +T ln
2D
W

(10)

this corresponds to the natural log version of Fitts’ formula
(3) if:

A = td (11)

B = T (12)

2.1 Example

Consider the particular case of (6) with time constantT =
0.5 and time delaytd = 0.2. Figure 1(a) shows the corre-
sponding step responsey(t) plotted against time.

Figure 1(b) shows values extracted from Figure 1(a) for
10 values ofW logarithmically spaced fromW = 0.1 toW =
0.5. In particular, the result forW = 0.1 corresponds toIe =
ln20≈ 3 and thusTm = 0.2+0.5Ie ≈ 1.7.

In practice, the step response transfer function need not
be exactly of the first-order+delay form of (6). As an exam-
ple, consider thesecond-order + delay transfer function:

Gc(s) =
e−std

(1+sT)(1+sT2)
(13)

whereT2 ≪ T. As illustrated in Figure 2, such a system can
be approximated by one of thye form of (6) with the delay
replaced bytd +T2.
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Fig. 3 Feedback control. (a) Conventional state-feedback control uses
a stateobserver(an optimal version of which is called a Kalman filter)
to give an estimate ˆx(t) of the current system statex(t) using a forward
model of the system together with the measured system outputy(t)
and the system inputu(t). The estimated state ˆx(t) is multiplied by
a (vector)state-feedback gain kand used as a feedback signal. The
reference signalr(t) is multiplied by thereference gain kr and added to
the feedback signal to give the system inputu(t). (b) Predictive control
uses apredictor to give an estimate ˆx(t + td) of the future statex(t +
td) of the system using a forward model, the estimated current state
x̂(t) and the system inputu(t). The feedback uses the predicted state
x̂(t + td); this removes the effect of a pure time-delaytd in the system
dynamics

3 Control system implications

If, in common with other authors, it is assumed that the
model (6) represents theclosed-loopresponse of a feedback
control system, there are three properties of system repre-
sented by (6) which have interesting implications:

1. the steady-state gain is unity (that is, ifr is of the form
of (7), the outputy settles down at a value ofD);

2. the rational part of transfer function is first order and
3. the system transfer function is the product of a pure time

delay and a rational transfer function.

The first property is straightforward to achieve by suitable
control system design; and the second property can be ap-
proximated as discussed later. The third property is the focus
of this paper; in particular, we emphasise that the use ofpre-
dictive controlleads to a closed-loop system with property
3.

It is assumed that the controlled system is adelay- dif-
ferentialsystem of the form

{

ẋ(t) = Ax(t)+Bu(t − td)
y(t) = Cx(t)

(14)

x(t) is the system state,y andu the system output and input
respectively andtd is the system time-delay.A is ann× n
matrix, B an n×1 column vector andC an 1×n row vec-
tor. x is ann×1 column vector – the system state.td is the
system time delay. Typically, but not necessarily,n = 2 and
the elements of the state are velocity and position; this case
is examined in the example of Section 3.5. There is no loss
of generality in placing the delay at the input rather than
the output; the latter can be accommodated by appropriately
shifting the time variable.

3.1 Non-predictive control

Given a system of the form of equation (14) conventional
state-space controller architecture has two main parts as out-
lined in Figure 3(a)

1. a stateobserverto give an estimate ˆx(t) of the current
system statex(t) using a forward model of the system
together with the measured system outputy(t) and the
system inputu(t). Following the standard textbooks, a
state observer can be written as:

{

˙̂x(t) = (A−LC)x̂(t)+Bu(t − td)−Ly(t)
ŷ(t) = Cx̂(t)

(15)

wherex̂ is the estimated state and ˆy the estimated out-
put. In the sense that it contains the system matricesA,
B andC, and the time-delaytd, the observer equation
(15) can be thought of as aforward model(Miall and
Wolpert 1996; Wolpert et al. 1998; Bhushan and Shad-
mehr 1999b; Davidson and Wolpert 2005) of the sys-
tem. Theobserver gain vector Lcan be chosen either to
fix the eigenvalues ofA− LC or by optimisation – see
Kwakernaak and Sivan (1972) for details. The observer
also has a Bayesian interpretation (Jacobs 1974; Bays
and Wolpert 2007). It is a standard result (Kwakernaak
and Sivan 1972) that the design of such an observer is
independent of the state feedback design. In particular,
the controller can be designed as if the state estimate is
correct:

x̂(t) = x(t) (16)

For clarity, equation (16) will be assumed for the rest of
this paper.

2. state feedback comprising a vectork multiplying the es-
timated state and a scalarkr multiplying the reference
r(t).

u(t) = kr r(t)−kx̂(t) (17)

In the delay-free case (td = 0), assumption (16), together
with the system equation (14) and the controller equation
(17) implies the closed-loop system:

{

ẋ(t) = Acx(t)+Bkr r(t)
y(t) = Cx(t)

(18)

where
Ac = A−Bk (19)

As discussed in the textbooks Kwakernaak and Sivan (1972)
k can be chosen either from an optimal control point of view
or to fix the closed-loop eigenvalues ofA−Bk.

The closed-loop system (18) can be rewritten as the ra-
tional transfer function:

y
r

= g(s) = C[sI−Ac]
−1Bkr (20)

This is of the form of (5) withtd = 0.
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If, on the other hand, the delay is non-zero (td > 0) the
closed-loop system (18)is replaced by

{

ẋ(t) = Ax(t)−Bkx(t − td)+Bkr r(t − td)
y(t) = Cx(t)

(21)

Because (21) has astatedelay, it cannot be written as the
product of a rational transfer function and a time delay as in
(5) and is therefore not consistent with Fitts’ law. An exam-
ple is given in Section 3.5.

However, as shown in Section 3.3,predictivecontrol re-
moves the state delay giving a closed-loop system that can
be written as (5). This is the key argument of the paper.

3.2 Approximate Predictive Control

Although the purpose of this paper is to advocatepredictive
control as the control design method that best explains Fitts’
law, this section looks at an approach intermediate between
that of the previous and the subsequent section. In particu-
lar, an observer/state-feedback control of the form of Section
3.1 and Figure 3(a) is derived which explicitly takes account
of the time delay by replacing the time-delay by a rational
transfer function approximation.

As discussed by Marshall (1979), thetranscendentaltrans-
fer functione−std can be approximated by a number of forms
of rational transfer function. One of these is:

e−std ≈
1

(1+std
N )N

(22)

The approximation improves with increasingN. The transfer
function of (22) has anN-dimensional state-space represen-
tation of the form:

{

ẋd(t) = Adxd(t)+Bdu(t)
ud(t) = Cdx(t)

(23)

where the statexd hasN components andud(t)≈ u(t−td). A
rational approximation to the delay-differential system (14)
is then given by combining (14) and (23) to give:

{

ẋa(t) = Aaxa(t)+Bau(t)
ya(t) = Caxa(t)

(24)

where

Aa =

[

A BCd
0N×n Ad

]

(25)

Ba =

[

0n×1
Bd

]

(26)

Ca =
[

C 01×N
]

(27)

where0N×n is theN×n zero matrix.
A controller can now be designed for then+N-dimensional

approximatesystem (22) – using the methods of Section 3.1

– but applied to theactualsystem (14). An example is given
in Section 3.5.

However, although this approach provides a method for
implementing control for a time-delay system, it is concep-
tually cumbersome compared with the conceptual clarity of
the predictive controller to be discussed in Section 3.3.

3.3 Predictive Control

This section shows that a class of predictive state-space con-
trollers give closed-loop responses that approximate Fitts’
law. As outlined in Figure 3(b), these controllers have three
parts: a stateobserver, a statepredictorand statefeedback.

Kleinman (1969) showed how a state predictor can be
written in state-space form. A simpler approach, given by
Sage and Melsa (1971), is given by the following formula:

x̂(t + td|t) = eAtd x̂(t)+
∫ td

0
eAt′Bu(t − t ′)dt′ (28)

wherex̂(t + td|t) is the predicted state at timet + td based
on data available at timet. As indicated in Figure 3(b), the
predictor (28) has two inputs: ˆx(t) from the observer andu(t)
the system input.

As shown by Sage and Melsa (1971), the error ˜x(t + td)
given by:

x̃(t + td) = x̂(t + td|t)−x(t + td) (29)

is not dependent on the state xand therefore does not affect
stability or the response tor(t). In the same spirit as (16) it
is assumed that ˜x(t + td) = 0 for the rest of this paper and so

x̂(t + td|t) = x(t + td) (30)

The predictivestate-feedback controller corresponding
to (17) is of the form:

u(t) = kr r(t)−kx̂(t + td|t) (31)

wherer(t) is the reference signal,kr is a scalar gain andk is
thefeedback gainann-dimensional row vector.

Equations (15), (28) and (31) form the feedback con-
troller which, by construction, is realisable.

Substituting equations (30) and (31) into the system equa-
tion (14) gives theclosed-loop system:

{

ẋ(t) = Acx(t)+Bkr r(t − td)
y(t) = Cx(t)

(32)

whereAc is given by (19). Unlike (21), (32) has nostate
delay termx(t − td).

The key point here is that, due to the predictive term
in the controller equation (31), the closed-loop system (32)
is such that the time delay only occurs at the input refer-
ence signal; the delay is moved outside the loop. Predictive
control thus satisfies property 3. To emphasise this point,
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the closed-loop system (32) can be rewritten as the transfer
function representation (5) with:

bc(s)
ac(s)

= Cc [sI−Ac]
−1Bkr (33)

The steady-state gain of the closed-loop system (32) (from
r to y) is:

gss= −CA−1
c Bkr = −CA−1

c Bkr (34)

Equation (34) can be used to choosekr so thatgss= 1 thus
satisfying property 1.

Property 2 will not be exactly satisfied unlessn = 1.
However, as discussed in Figure 2 of Section 3.5, it can be
approximately satisfied in the casen = 2 by suitable choice
of the feedback gaink.

3.4 Intermittent predictive control

As discussed in the Introduction,intermittentcontrol has a
long history in the context of human motion control and
a somewhat shorter history in engineering motion control.
This section gives a brief introduction to a particular form
of intermittent control based on Gawthrop and Wang (2006)
to which the reader is referred for more detail. The main re-
sult of this section is that predictive intermittent control, like
predictive continuous control, is also consistent with Fitts’
law.

The intermittent controller discussed by Gawthrop and
Wang (2006) (in turn based on earlier work (Ronco et al.
1999; Gawthrop and Ronco 2000, 2002; Gawthrop 2002,
2004), generates a sequence of open-loop control trajecto-
ries each of which lasts for a time∆ol .

At each timeti = i∆ol , a state measurement is taken and
used to generate the trajectory parameter vectorUi given by:

Ui = U(ti) = Kr r(t)−Kx̂(ti |ti−1) (35)

where the prediction ˆx(ti |ti−1) is once again given by (28).
The trajectories are a weighted sum ofbasis functions

which, in the special case considered here, can be written as
the statesxu of the unforced dynamic system:

{

dxu
dτ (τ) = Acxu(τ)

xu(0) = xu0
(36)

The correspondingopen-loopcontrol signal is then

u(t) = u(τ + ti) = xT
u (τ)Ui (37)

As discussed by Gawthrop and Wang (2006), in the absence
of disturbances and state-error, an appropriate choice ofK
andKr makes the control signal generated by (37) identical
to that generated by (31). It therefore follows that, in these
circumstances, the conclusions of Section 3.3 pertaining to
continuouspredictive control are equally applicable tointer-
mittentpredictive control.

00.20.40.60.81

0 0.5 1 1.5 2

y

t(se
)

Nonpredi
tivePredi
tive

(a) No predictor

00.20.40.60.81

0 0.5 1 1.5 2
y

t

N = 2Exa
t

(b) Approximate predictor

Fig. 4 Non-predictive control step responses. (a) compares the non-
predictive and predictive controllers; the predictive controller has the
correct reponse of a pure time delay followed by an exponetial; the
non-predictive controller has a more oscillatory response. (b) compares
the approximate-predictive (N = 2) and predictive controllers. In this
case, the approximate-predictive response closely follows that of the
predictive control response; this improves with increasing N.

The introduction of disturbances and state-error does how-
ever, have different effects on continuous and intermittent
control. As mentioned in the Conclusions, this could form
the basis of an experiment to distinguish these two possibil-
ities.

3.5 Example

Consider the system of the form of (14) where:

A =

[

0 0
1 0

]

(38)

B =

[

1
0

]

(39)

C =
[

0 1
]

(40)

td = 0.2 (41)

which corresponds to the transfer functionG(s)= e−0.2s

s2 . This
system corresponds to the the motion of an inertia of unit
mass driven by a force delayed in time by 0.2sec where the
system outputy is position and the system inputu is the
force.



7

Using standard state-space method known as “pole place-
ment” Kwakernaak and Sivan (1972) the feedback gaink
was chosen to give two (stable) closed-loop poles ats= −2
ands= −10 giving:

k =
[

12 20
]

(42)

kr = 20 (43)

predictive controlgives the closed-loop system of the form
of (5)&(33) where

Gc(s) = e−0.2s 1
(1+0.5s)(1+0.1s)

(44)

Noting thate−std ≈ 1− std ≈ 1
1+std

, it follows thatGc(s) of
(44) can be approximated by:

Gc(s) ≈ e−0.3s 1
1+0.5s

(45)

This result corresponds to Figure 2.
On the other hand,non-predictivecontrol gives an un-

stable closed-loop system for the design parameters of (42).
With some experimentation it was found that reducing the
gains to

k =
[

6 5
]

(46)

kr = 5 (47)

gave a stable system with the step response of Figure 4(a).
The initial response is approximately the same as that of the
non-predictive control, but the time delay causes oscillations
which lead to a quite different response.

Using the approach of Section 3.2, a high order con-
troller was designed. As noted in Section 3.2, closed-loop
poles corresponding to the approximate delay cannot be cho-
sen arbitrarily. For this example, theN poles corresponding
to the approximate delay were left at the open-loop positions
of s=−N

td
, the remainingn= 2 poles were chosen as for the

predictive controller ats= −2 ands= −10. The results for
N = 1, N = 2 andN = 4 appear in Figure 4(b). Figure 4(b)
illustrated that it is, indeed, possible to approximate the re-
sponse of a predictive controller using a high-order without
an explicit predictor. However, although such a controller
may be convenient for implementation, it lacks the concep-
tual clarity of the underlying predictive controller.

4 Discussion and Conclusion

Assuming the existence of closed-loop feedback, either con-
tinuous or intermittent, we have considered whether such
feedback should be predictive or not predictive to be consis-
tent with Fitts’ law. Since Fitts’ law is equivalent to a time
delay separated from a first-order system, we have demon-
strated, using known control theory, that the controller must
be predictive. A non-predictive controller retains a state de-
lay within feedback loop which is not consistent with Fitts’
law.

Whilst any predictive controller can, as discussed in Sec-
tion 3.2, be approximated by a controller without an ex-
plicit predictor, such as a rational transfer function, such a
controller would be of high-order. Such ”non-parametric”
controllers are essentially empirical in nature, and, although
useful for implementation are without physical meaning when
divorced from the underlying predictive controller. On the
other hand a predictive controller offers an exact concep-
tual explanation of Fitts’ law with a clear physical inter-
pretation. This new insight supports the idea that predictive
mechanisms underlie the empirical ”speed-accuracy trade-
off” known as Fitts’ law.

The relation between predictive, feedback control and hu-
man neurophysiology.The predictive control model (Fig 3(b))
assumes (i) that control is exercised on the basis of feed-
back between the intended and actual final position and (ii)
that the motor system estimates system states (e.g. position
and velocity of hand, or the length/tension of muscle actu-
ators) at a time in the future in order to counter the time
delay present in the neuromuscular system. It is common-
place to assume that motor control is exercised on the ba-
sis of feedback and generally it is uncontroversial to as-
sume feedback between the intended and actual state, i.e.
position and velocity, of the hand. There are issues as to
whether feedback is continuous or intermittent, though as
we argued, whether feedback is continuous or intermittent
does not alter the case for predictive control. Many (includ-
ing Connelly (1984),Cannon (1994), Jagacinski and Flach
(2003) and Phillips and Repperger (1997)) though not all
(Harris and Wolpert 1998), explanations of Fitts law have
assumed feedback.

Whether or not the motor control system uses predic-
tion has been subject to considerable debate. Evidence for
prediction in the motor control system has been steadily in-
creasing (Davidson and Wolpert 2005). Usually, prediction
refers to forward models which estimate internal and exter-
nal states of the body from which motor commands are de-
rived (Miall and Wolpert 1996; Wolpert et al. 1998; David-
son and Wolpert 2005; Bays and Wolpert 2007) and such
prediction is associated with the cerebellum. The predictive
model in this paper (Fig 3(b)) goes beyond the usual for-
ward model: in addition to the usual forward model (ob-
server in Figs 3(a) and 3(b)) there is an explicit prediction
of the future state (predictor in Fig 3(b)) which eliminates
from the feedback loop the time delay inherent in the neu-
romuscular system. Currently, there is less neurophysiolog-
ical evidence for such predictors. In the past, authors have
advocated Smith predictors (Miall et al. 1993b; Miall and
Wolpert 1996; Wolpert et al. 1998) for this role of remov-
ing the inherent time delay from the feedback loop, though
more recently they have provided neurophysiological evi-
dence against the adaptations expected for a Smith predictor
(Miall and Jackson 2006). Unlike the Smith predictor which
cannot stably predict unstable systems, the predictive control
model implemented in this paper is stable and is proposed as
a basis for neurophysiological control.
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As discussed in the Introduction Craik (1947) introduced
the idea ofIntermittent Controlto describe human move-
ment control. As discussed in and Section 3.4, intermittent
control is closely related to predictive control and, in some
circumstances is indistinguishable from it. Thus the conclu-
sions of this paper do not distinguish between predictive
and intermittent control. However, experiments designed to
probe the differences between the two, in particular those
focused on exploiting the intermittent open-loop nature of
intermittent control could resolve this issue. For example a
set of perturbation signals where an initial pulse is followed
by another within, say, 200ms, could be used.

Scientific predictions from the predictive feedback model which
are different from previous models.Most previous models
have assumed feedback. However,open-loop(that is, no feed-
back) optimal control with a minimum-variance endpoint
criteria and signal dependent noise has been considered by
Harris and Wolpert (1998) and had been shown to give hand
movement trajectories consistent with Fitts’ law for dura-
tions up to 0.7s. If the target were moved during the move-
ment, this open loop theory would predict no alteration of
trajectory. In contrast, the predictive feedback model pre-
dicts that the hand trajectory would respond to online changes
in target position after a certain delay e.g. 0.2s.

The predictive feedback control model predicts that the
closed-loop system is the product of a rational transfer func-
tion and a pure time-delay - the time delay is taken outside
the closed-loop system. In contrast, previous non-predictive
feedback models (e.g. Connelly (1984),Cannon (1994), Ja-
gacinski and Flach (2003) and Phillips and Repperger (1997))
would predict a closed-loop system with a non-rational trans-
fer function arising from the time-delay embedded in the
closed-loop.

The biological meaning of this new insight can be illus-
trated with an experiment. Prediction solves the problem of
having time delays in the feedback loop, so the difference
between a predictive and non-predictive controller will be
heightened when the load to be controlled is unstable and the
feedback time delays are large. Consider a Fitts type exper-
iment where a subject is asked to move an unstable load as
quickly as possible to a newly presented target. The load is
unstable, so the control must use feedback as without feed-
back, the unstable load cannot be stabilised. If an artificial
delay is inserted between visual feedback of the load posi-
tion and application of force to move the load, the closed-
loop system will become more oscillatory and unstable. If
the delay is great enough, a feedback controller without pre-
diction will be unable to stabilise the load in its movement
to the target. On the other hand, with sufficient training, we
suggest that the hypothesised predictive controller can be
tuned to predict the added time delay such that the load can
be moved stably to the target. Moreover, our results imply
that Fitts’ law then applies but with theA parameter of (3)
increased by the added delay.

As we have shown in this paper, predictive control gives
the simplest feedback control parameterisation of Fitts law.

If this insight has biological as well mathematical validity,
then experiments of the kind discussed in this section will
show human visuo-manual control to be predictive.
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