12 research outputs found

    Halo globular clusters observed with AAOmega: dark matter content, metallicity and tidal heating

    Full text link
    Globular clusters have proven to be essential to our understanding of many important astrophysical phenomena. Here we analyse spectroscopic observations of ten Halo globular clusters to determine their dark matter content, their tidal heating by the Galactic disc and halo, describe their metallicities and the likelihood that Newtonian dynamics explain their kinematics. We analyse a large number of members in all clusters, allowing us to address all these issues together, and we have included NGC 288 and M30 to overlap with previous studies. We find that any flattening of the velocity dispersion profiles in the outer regions of our clusters can be explained by tidal heating. We also find that all our GCs have M/L_V < 5, therefore, we infer the observed dynamics do not require dark matter, or a modification of gravity. We suggest that the lack of tidal heating signatures in distant clusters indicates the Halo is not triaxial. The isothermal rotations of each cluster are measured, with M4 and NGC 288 exhibiting rotation at a level of 0.9 +/- 0.1 km/s and 0.25 +/- 0.15 km/s, respectively. We also indirectly measure the tidal radius of NGC 6752, determining a more realistic figure for this cluster than current literature values. Lastly, an unresolved and intriguing puzzle is uncovered with regard to the cooling of the outer regions of all ten clusters.Comment: 12 pages, 8 figures, 1 table. Accepted for publication in MNRAS

    The InfraRed Imaging Spectrograph (IRIS) for TMT: latest science cases and simulations

    Full text link
    The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.Comment: 15 pages, 7 figures, SPIE (2016) 9909-0

    The GALEX Ultraviolet Atlas of Nearby Galaxies

    Get PDF
    We present images, integrated photometry, surface-brightness and color profiles for a total of 1034 nearby galaxies recently observed by the GALEX satellite in its far-ultraviolet (FUV; 1516A) and near-ultraviolet (NUV; 2267A) bands. (...) This data set has been complemented with archival optical, near-infrared, and far-infrared fluxes and colors. We find that the integrated (FUV-K) color provides robust discrimination between elliptical and spiral/irregular galaxies and also among spiral galaxies of different sub-types. Elliptical galaxies with brighter K-band luminosities (i.e. more massive) are redder in (NUV-K) color but bluer in (FUV-NUV) than less massive ellipticals. In the case of the spiral/irregular galaxies our analysis shows the presence of a relatively tight correlation between the (FUV-NUV) color and the total infrared-to-UV ratio. The correlation found between (FUV-NUV) color and K-band luminosity (with lower luminosity objects being bluer than more luminous ones) can be explained as due to an increase in the dust content with galaxy luminosity. The images in this Atlas along with the profiles and integrated properties are publicly available through a dedicated web page at http://nedwww.ipac.caltech.edu/level5/GALEX_Atlas/Comment: 181 pages, 10 figures, accepted for publication in ApJS (abstract abridged

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu

    The O'Connell effect in eclipsing binaries

    No full text
    Bibliography: p. 175-184
    corecore