133 research outputs found

    Production performance of dairy cows after the dietary addition of clinoptilolite

    Get PDF
    Clays are frequently proposed for the addition to dairy cattle diets to reduce the transfer of mycotoxins in milk. This study examined the effect of the addition of Clinoptilolite to the diet of lactating dairy cows on milk production and milk com- position. Thirty-two lactating Holstein cows (average lactation length: 142 d) were blocked according to milk production, parity, and days of lactation for assignment to one of two dietary treatments: control diet; control diet + Clinoptilolite, 200g/d. The control diet was based on corn and alfalfa silages, hay and concentrates, and did not contain aflatoxins above the safe level. The experimental period lasted 76 days. The Clinoptilolite supplementation did not affect milk yield and milk composition other than urea contents. The urea level in milk was negatively affected by Clinoptilolite addition (con- trol group 29.7 mg/100 ml vs Clinoptilolite group 31.3 mg/100ml). The dietary addition of Clinoptilolite did not change pH, ammonia content and VFA molar percentages in the rumen. No dietary effect on mineral contents of blood plasma (Na, K, Zn, and Ca) was observed. In case of clinoptilolite use in dairy cattle feeding, scarce negative effect on milk pro- duction and quality are expected

    Crystal structure and ferroelectric properties of ϵ-Ga2O3 films grown on (0001)-sapphire

    Get PDF
    The crystal structure and ferroelectric properties of ϵ-Ga2O3 deposited by low-temperature MOCVD on (0001)-sapphire were investigated by single-crystal X-ray diffraction and the dynamic hysteresis measurement technique. A thorough investigation of this relatively unknown polymorph of Ga2O3 showed that it is composed of layers of both octahedrally and tetrahedrally coordinated Ga3+ sites, which appear to be occupied with a 66% probability. The refinement of the crystal structure in the noncentrosymmetric space group P63mc pointed out the presence of uncompensated electrical dipoles suggesting ferroelectric properties, which were finally demonstrated by independent measurements of the ferroelectric hysteresis. A clear epitaxial relation is observed with respect to the c-oriented sapphire substrate, with the Ga2O3 [10-10] direction being parallel to the Al2O3 direction [11-20], yielding a lattice mismatch of about 4.1%

    Autophagy and mitophagy biomarkers are reduced in sera of patients with Alzheimer's disease and mild cognitive impairment

    Get PDF
    Dementia is a neurocognitive disorder characterized by a progressive memory loss and impairment in cognitive and functional abilities. Autophagy and mitophagy are two important cellular processes by which the damaged intracellular components are degraded by lysosomes. To investigate the contribution of autophagy and mitophagy in degenerative diseases, we investigated the serum levels of specific autophagic markers (ATG5 protein) and mitophagic markers (Parkin protein) in a population of older patients by enzyme-linked immunosorbent assay. Two hundred elderly (≥65 years) outpatients were included in the study: 40 (20 F and 20 M) with mild-moderate late onset Alzheimer's disease (AD); 40 (20 F and 20 M) affected by vascular dementia (VAD); 40 with mild cognitive impairment (MCI); 40 (20 F and 20 M) with "mixed" dementia (MD); 40 subjects without signs of cognitive impairment were included as sex-matched controls. Our data indicated that, in serum samples, ATG5 and Parkin were both elevated in controls, and that VAD compared with AD, MCI and MD (all p < 0.01). Patients affected by AD, MD, and MCI showed significantly reduced circulating levels of both ATG5 and Parkin compared to healthy controls and VAD individuals, reflecting a significant down-regulation of autophagy and mitophagy pathways in these groups of patients. The measurement of serum levels of ATG5 and Parkin may represent an easily accessible diagnostic tool for the early monitoring of patients with cognitive decline

    The GINGER Project and status of the ring-laser of LNGS

    Get PDF
    A ring-laser attached to the Earth measures the absolute angular velocity of the Earth summed to the relativistic precessions, de Sitter and Lense-Thirring. GINGER (Gyroscopes IN GEneral Relativity) is a project aiming at measuring the LenseThirring effect with a ground based detector; it is based on an array of ring-lasers. Comparing the Earth angular velocity measured by IERS and the measurement done with the GINGER array, the Lense-Thirring effect can be evaluated. Compared to the existing space experiments, GINGER provides a local measurement, not the averaged value and it is unnecessary to model the gravitational field. It is a proposal, but it is not far from being a reality. In fact the GrossRing G of the Geodesy Observatory of Wettzell has a sensitivity very close to the necessary one. G ofWettzell is part of the IERS system which provides the measure of the Length Of the DAY (LOD); G provides information on the fast component of LOD. In the last few years, a roadmap toward GINGER has been outlined. The experiment G-GranSasso, financed by the INFN Commission II, is developing instrumentations and tests along the roadmap of GINGER. In this short paper the main activities of G-GranSasso and some results will be presented. The first results of GINGERino will be reported, GINGERino is the large ring-laser installed inside LNGS and now in the commissioning phase. Ring-lasers provide as well important informations for geophysics, in particular the rotational seismology, which is an emerging field of science. GINGERino is one of the three experiments of common interest between INFN and INGV

    er.autopilot 1.0: The Full Autonomous Stack for Oval Racing at High Speeds

    Full text link
    The Indy Autonomous Challenge (IAC) brought together for the first time in history nine autonomous racing teams competing at unprecedented speed and in head-to-head scenario, using independently developed software on open-wheel racecars. This paper presents the complete software architecture used by team TII EuroRacing (TII-ER), covering all the modules needed to avoid static obstacles, perform active overtakes and reach speeds above 75 m/s (270 km/h). In addition to the most common modules related to perception, planning, and control, we discuss the approaches used for vehicle dynamics modelling, simulation, telemetry, and safety. Overall results and the performance of each module are described, as well as the lessons learned during the first two events of the competition on oval tracks, where the team placed respectively second and third.Comment: Preprint: Accepted to Field Robotics "Opportunities and Challenges with Autonomous Racing" Special Issu

    Exploiting natural polysaccharides to enhance in vitro bio-constructs of primary neurons and progenitor cells

    Get PDF
    Current strategies in Central Nervous System (CNS) repair focus on the engineering of artificial scaffolds for guiding and promoting neuronal tissue regrowth. Ideally, one should combine such synthetic structures with stem cell therapies, encapsulating progenitor cells and instructing their differentiation and growth. We used developments in the design, synthesis, and characterization of polysaccharide-based bioactive polymeric materials for testing the ideal composite supporting neuronal network growth, synapse formation and stem cell differentiation into neurons and motor neurons. Moreover, we investigated the feasibility of combining these approaches with engineered mesenchymal stem cells able to release neurotrophic factors. We show here that composite bio-constructs made of Chitlac, a Chitosan derivative, favor hippocampal neuronal growth, synapse formation and the differentiation of progenitors into the proper neuronal lineage, that can be improved by local and continuous delivery of neurotrophins. Statement of Significance In our work, we characterized polysaccharide-based bioactive platforms as biocompatible materials for nerve tissue engineering. We show that Chitlac-thick substrates are able to promote neuronal growth, differentiation, maturation and formation of active synapses. These observations support this new material as a promising candidate for the development of complex bio-constructs promoting central nervous system regeneration. Our novel findings sustain the exploitation of polysaccharide-based scaffolds able to favour neuronal network reconstruction. Our study shows that Chitlac-thick may be an ideal candidate for the design of biomaterial scaffolds enriched with stem cell therapies as an innovative approach for central nervous system repair

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Genomic traits of Klebsiella oxytoca DSM 29614, an uncommon metal-nanoparticle producer strain isolated from acid mine drainages

    Get PDF
    Abstract Background: Klebsiella oxytoca DSM 29614 - isolated from acid mine drainages - grows anaerobically using Fe(III)- citrate as sole carbon and energy source, unlike other enterobacteria and K. oxytoca clinical isolates. The DSM 29614 strain is multi metal resistant and produces metal nanoparticles that are embedded in its very peculiar capsular exopolysaccharide. These metal nanoparticles were effective as antimicrobial and anticancer compounds, chemical catalysts and nano-fertilizers. Results: The DSM 29614 strain genome was sequenced and analysed by a combination of in silico procedures. Comparative genomics, performed between 85 K. oxytoca representatives and K. oxytoca DSM 29614, revealed that this bacterial group has an open pangenome, characterized by a very small core genome (1009 genes, about 2%), a high fraction of unique (43,808 genes, about 87%) and accessory genes (5559 genes, about 11%). Proteins belonging to COG categories “Carbohydrate transport and metabolism” (G), “Amino acid transport and metabolism” (E), “Coenzyme transport and metabolism” (H), “Inorganic ion transport and metabolism” (P), and “membrane biogenesis-related proteins” (M) are particularly abundant in the predicted proteome of DSM 29614 strain. The results of a protein functional enrichment analysis - based on a previous proteomic analysis – revealed metabolic optimization during Fe(III)- citrate anaerobic utilization. In this growth condition, the observed high levels of Fe(II) may be due to different flavin metal reductases and siderophores as inferred form genome analysis. The presence of genes responsible for the synthesis of exopolysaccharide and for the tolerance to heavy metals was highlighted too. The inferred genomic insights were confirmed by a set of phenotypic tests showing specific metabolic capability in terms of i) Fe2+ and exopolysaccharide production and ii) phosphatase activity involved in precipitation of metal ion-phosphate salts. Conclusion: The K. oxytoca DSM 29614 unique capabilities of using Fe(III)-citrate as sole carbon and energy source in anaerobiosis and tolerating diverse metals coincides with the presence at the genomic level of specific genes that can support i) energy metabolism optimization, ii) cell protection by the biosynthesis of a peculiar exopolysaccharide armour entrapping metal ions and iii) general and metal-specific detoxifying activities by different proteins and metabolites
    corecore