156 research outputs found

    Organizing gene literature retrieval, profiling, and visualization training workshops for early career researchers

    Get PDF
    Developing the skills needed to effectively search and extract information from biomedical literature is essential for early-career researchers. It is, for instance, on this basis that the novelty of experimental results, and therefore publishing opportunities, can be evaluated. Given the unprecedented volume of publications in the field of biomedical research, new systematic approaches need to be devised and adopted for the retrieval and curation of literature relevant to a specific theme. Here we describe a hands-on training curriculum aimed at retrieval, profiling, and visualization of literature associated with a given topic. This curriculum was implemented in a workshop in January 2021. We provide supporting material and step-by-step implementation guidelines with the ISG15 gene literature serving as an illustrative use case. Through participation in such a workshop, trainees can learn: 1) to build and troubleshoot PubMed queries in order to retrieve the literature associated with a gene of interest; 2) to identify key concepts relevant to given themes (such as cell types, diseases, and biological processes); 3) to measure the prevalence of these concepts in the gene literature; 4) to extract key information from relevant articles, and 5) to develop a background section or summary on the basis of this information. Finally, trainees can learn to consolidate the structured information captured through this process for presentation via an interactive web application

    Pharmacogenetics driving personalized medicine: Analysis of genetic polymorphisms related to breast cancer medications in Italian isolated populations

    Get PDF
    BACKGROUND: Breast cancer is the most common cancer in women characterized by a high variable clinical outcome among individuals treated with equivalent regimens and novel targeted therapies. In this study, we performed a population based approach intersecting high-throughput genotype data from Friuli Venezia Giulia (FVG) isolated populations with publically available pharmacogenomics information to estimate the frequency of genotypes correlated with responsiveness to breast cancer treatment thus improving the clinical management of this disease in an efficient and cost effective way. METHODS: A list of 80 variants reported to be related to the efficacy or toxicity of breast cancer drugs was obtained from PharmGKB database. Fourty-one were present in FVG, 1000G European (EUR) and ExAC (Non Finnish European) databases. Their frequency was extracted using PLINK software and the differences tested by Fisher's exact test. RESULTS: Statistical analyses revealed that 13 out of the 41 (32 %) variants were significantly different in frequency in our sample as compared to the EUR/ExAC cohorts. For nine variants the available level of evidence (LOE) included polymorphisms related to cyclophosphamide, tamoxifen, doxorubicin, fluorpyrimidine and paclitaxel. In particular, for trastuzumab two variants were detected: (1) rs1801274-G within FCGR2A and associated with decreased efficacy (LOE 2B); (2) rs1136201-G located within ERBB2 and associated with increased toxicity (LOE 3). Both these two variants were underrepresented in the FVG population compared to EUR/ExAC population thus suggesting a high therapeutic index of this drug in our population. Moreover, as regards fluoropyrimidines, the frequency of two polymorphisms within the DPYD gene associated with drug toxicity (e.g., rs2297595-C allele and rs3918290-T allele, LOE 2A and 1, respectively) was extremely low in FVG population thus suggesting that a larger number of FVG patients could benefit from full dosage of fluoropyrimidine therapy. CONCLUSIONS: All these findings increase the overall knowledge on the prevalence of specific variants related with breast cancer treatment responsiveness in FVG population and highlight the importance of assessing gene polymorphisms related with cancer medications in isolated communities

    Spiral Antenna with Reconfigurable HIS using Liquid Crystals for Monopulse Radar Application

    Get PDF
    Combined meta-intersections between two algorithms SOM and k-means. This Excel file contains final 23 meta-intersections as described in Results section. Each intersection is in separate tab, which also contains gene-annotation enrichment analysis results. (XLSX 721 kb

    Functionalized multiwalled carbon nanotubes as ultrasound contrast agents

    Get PDF
    Ultrasonography is a fundamental diagnostic imaging tool in everyday clinical practice. Here, we are unique in describing the use of functionalized multiwalled carbon nanotubes (MWCNTs) as hyperechogenic material, suggesting their potential application as ultrasound contrast agents. Initially, we carried out a thorough investigation to assess the echogenic property of the nanotubes in vitro. We demonstrated their long-lasting ultrasound contrast properties. We also showed that ultrasound signal of functionalized MWCNTs is higher than graphene oxide, pristine MWCNTs, and functionalized single-walled CNTs. Qualitatively, the ultrasound signal of CNTs was equal to that of sulfur hexafluoride (SonoVue), a commercially available contrast agent. Then, we found that MWCNTs were highly echogenic in liver and heart through ex vivo experiments using pig as an animal model. In contrast to the majority of ultrasound contrast agents, we observed in a phantom bladder that the tubes can be visualized within a wide variety of frequencies (i.e., 5.5–10 MHz) and 12.5 MHz using tissue harmonic imaging modality. Finally, we demonstrated in vivo in the pig bladder that MWCNTs can be observed at low frequencies, which are appropriate for abdominal organs. Importantly, we did not report any toxicity of CNTs after 7 d from the injection by animal autopsy, organ histology and immunostaining, blood count, and chemical profile. Our results reveal the enormous potential of CNTs as ultrasound contrast agents, giving support for their future applications as theranostic nanoparticles, combining diagnostic and therapeutic modalities

    Liquid Biopsy: A Step Closer to Transform Diagnosis, Prognosis and Future of Cancer Treatments

    Get PDF
    Over the past decade, invasive techniques for diagnosing and monitoring cancers are slowly being replaced by non-invasive methods such as liquid biopsy. Liquid biopsies have drastically revolutionized the field of clinical oncology, offering ease in tumor sampling, continuous monitoring by repeated sampling, devising personalized therapeutic regimens, and screening for therapeutic resistance. Liquid biopsies consist of isolating tumor-derived entities like circulating tumor cells, circulating tumor DNA, tumor extracellular vesicles, etc., present in the body fluids of patients with cancer, followed by an analysis of genomic and proteomic data contained within them. Methods for isolation and analysis of liquid biopsies have rapidly evolved over the past few years as described in the review, thus providing greater details about tumor characteristics such as tumor progression, tumor staging, heterogeneity, gene mutations, and clonal evolution, etc. Liquid biopsies from cancer patients have opened up newer avenues in detection and continuous monitoring, treatment based on precision medicine, and screening of markers for therapeutic resistance. Though the technology of liquid biopsies is still evolving, its non-invasive nature promises to open new eras in clinical oncology. The purpose of this review is to provide an overview of the current methodologies involved in liquid biopsies and their application in isolating tumor markers for detection, prognosis, and monitoring cancer treatment outcomes

    Gene expression profiling in acute allograft rejection: challenging the immunologic constant of rejection hypothesis

    Get PDF
    In humans, the role and relationship between molecular pathways that lead to tissue destruction during acute allograft rejection are not fully understood. Based on studies conducted in humans, we recently hypothesized that different immune-mediated tissue destruction processes (i.e. cancer, infection, autoimmunity) share common convergent final mechanisms. We called this phenomenon the "Immunologic Constant of Rejection (ICR)." The elements of the ICR include molecular pathways that are consistently described through different immune-mediated tissue destruction processes and demonstrate the activation of interferon-stimulated genes (ISGs), the recruitment of cytotoxic immune cells (primarily through CXCR3/CCR5 ligand pathways), and the activation of immune effector function genes (IEF genes; granzymes A/B, perforin, etc.)

    Interaction of a traditional Chinese Medicine (PHY906) and CPT-11 on the inflammatory process in the tumor microenvironment

    Get PDF
    <p>Abstract</p> <p>Background -</p> <p>Traditional Chinese Medicine (TCM) has been used for thousands of years to treat or prevent diseases, including cancer. Good manufacturing practices (GMP) and sophisticated product analysis (PhytomicsQC) to ensure consistency are now available allowing the assessment of its utility. Polychemical Medicines, like TCM, include chemicals with distinct tissue-dependent pharmacodynamic properties that result in tissue-specific bioactivity. Determining the mode of action of these mixtures was previously unsatisfactory; however, information rich RNA microarray technologies now allow for thorough mechanistic studies of the effects complex mixtures. PHY906 is a long used four herb TCM formula employed as an adjuvant to relieve the side effects associated with chemotherapy. Animal studies documented a decrease in global toxicity and an increase in therapeutic effectiveness of chemotherapy when combined with PHY906.</p> <p>Methods -</p> <p>Using a systems biology approach, we studied tumor tissue to identify reasons for the enhancement of the antitumor effect of CPT-11 (CPT-11) by PHY906 in a well-characterized pre-clinical model; the administration of PHY906 and CPT-11 to female BDF-1 mice bearing subcutaneous Colon 38 tumors.</p> <p>Results -</p> <p>We observed that 1) individually PHY906 and CPT-11 induce distinct alterations in tumor, liver and spleen; 2) PHY906 alone predominantly induces repression of transcription and immune-suppression in tumors; 3) these effects are reverted in the presence of CPT-11, with prevalent induction of pro-apoptotic and pro-inflammatory pathways that may favor tumor rejection.</p> <p>Conclusions -</p> <p>PHY906 together with CPT-11 triggers unique changes not activated by each one alone suggesting that the combination creates a unique tissue-specific response.</p

    Single-cell mass cytometry reveals the impact of graphene nanomaterials with human primary immune cells

    Get PDF
    Understanding the interaction of nanomaterials and immune cells at the biomolecular level is of great significance in therapeutic applications. Here, the authors investigated the interaction of graphene oxide nanomaterials and several immune cell subpopulations using single-cell mass cytometry and genome-wide transcriptome analysis

    The stable traits of melanoma genetics: an alternate approach to target discovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The weight that gene copy number plays in transcription remains controversial; although in specific cases gene expression correlates with copy number, the relationship cannot be inferred at the global level. We hypothesized that genes steadily expressed by 15 melanoma cell lines (CMs) and their parental tissues (TMs) should be critical for oncogenesis and their expression most frequently influenced by their respective copy number.</p> <p>Results</p> <p>Functional interpretation of 3,030 transcripts concordantly expressed (Pearson's correlation coefficient p-value < 0.05) by CMs and TMs confirmed an enrichment of functions crucial to oncogenesis. Among them, 968 were expressed according to the transcriptional efficiency predicted by copy number analysis (Pearson's correlation coefficient p-value < 0.05). We named these genes, "genomic delegates" as they represent at the transcriptional level the genetic footprint of individual cancers. We then tested whether the genes could categorize 112 melanoma metastases. Two divergent phenotypes were observed: one with prevalent expression of cancer testis antigens, enhanced cyclin activity, WNT signaling, and a Th17 immune phenotype (Class A). This phenotype expressed, therefore, transcripts previously associated to more aggressive cancer. The second class (B) prevalently expressed genes associated with melanoma signaling including <it>MITF</it>, melanoma differentiation antigens, and displayed a Th1 immune phenotype associated with better prognosis and likelihood to respond to immunotherapy. An intermediate third class (C) was further identified. The three phenotypes were confirmed by unsupervised principal component analysis.</p> <p>Conclusions</p> <p>This study suggests that clinically relevant phenotypes of melanoma can be retraced to stable oncogenic properties of cancer cells linked to their genetic back bone, and offers a roadmap for uncovering novel targets for tailored anti-cancer therapy.</p
    corecore