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Ultrasonography is a fundamental diagnostic imaging tool in
everyday clinical practice. Here, we are unique in describing the
use of functionalized multiwalled carbon nanotubes (MWCNTs) as
hyperechogenic material, suggesting their potential application as
ultrasound contrast agents. Initially, we carried out a thorough
investigation to assess the echogenic property of the nanotubes
in vitro. We demonstrated their long-lasting ultrasound contrast
properties. We also showed that ultrasound signal of functional-
ized MWCNTs is higher than graphene oxide, pristine MWCNTs,
and functionalized single-walled CNTs. Qualitatively, the ultra-
sound signal of CNTs was equal to that of sulfur hexafluoride
(SonoVue), a commercially available contrast agent. Then, we
found that MWCNTs were highly echogenic in liver and heart
through ex vivo experiments using pig as an animal model. In
contrast to the majority of ultrasound contrast agents, we ob-
served in a phantom bladder that the tubes can be visualized
within a wide variety of frequencies (i.e., 5.5–10 MHz) and 12.5
MHz using tissue harmonic imaging modality. Finally, we demon-
strated in vivo in the pig bladder that MWCNTs can be observed at
low frequencies, which are appropriate for abdominal organs. Im-
portantly, we did not report any toxicity of CNTs after 7 d from the
injection by animal autopsy, organ histology and immunostaining,
blood count, and chemical profile. Our results reveal the enormous
potential of CNTs as ultrasound contrast agents, giving support for
their future applications as theranostic nanoparticles, combining
diagnostic and therapeutic modalities.
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Carbon nanotubes (CNTs) represent a potential and emerging
powerful tool in diagnostic imaging (1). O’Connell et al. first

demonstrated near-infrared (NIR) photoluminescence from
micelle-encapsulated CNTs (2). Following this observation, several
other studies investigated CNT applications in photoluminescence
imaging (3). Single-walled CNTs (SWCNTs) also exhibit high-
resonance Raman scattering because of their sharp electronic
density of state. This characteristic was further explored for
imaging purposes in vitro and ex vivo (i.e., in hepatic cells and
tissue slices) (4, 5). The use of CNTs as multicolor contrast agents
for multiplexed Raman imaging has also been described (6). Re-
cently, genetically engineered multifunctional M13 phage has
been assembled with SWCNTs and detected in tissue phantoms in
the second NIR window (7). Another study has reported the high
potential of this type of nanomaterial for deep-tissue anatomical
imaging in the second NIR window in mice (8). Moreover, pilot
studies have shown the possible applications of SWCNTs con-
jugated with targeting peptides in photoacoustic imaging (9, 10).
Photoacoustics and ultrasonography are both powerful imaging

methodologies but with substantial differences: (i) the photo-
acoustics induces a region of tissue to become an active acoustic

source, but the conventional ultrasound introduces high-frequency
acoustic waves and detects their echo; (ii) the photoacoustics is
broadband, containing frequencies up to 50 MHz or more, but
ultrasound usually uses a single frequency. In addition, despite
the high potential of photoacoustic imaging, ultrasonography
remains the most popular medical imaging modality because of
to the low price per examination and safety (11). There are few
important requirements for an exogenous substance to be con-
sidered an ultrasound contrast agent (USCA): (i) an easy way of
administration, either in the blood pool or in a cavity; (ii) a most
possible high stability; (iii) an easy elimination from the body;
(iv) a low toxicity; and (v) a good echogenicity. Several studies
have already shown that functionalized CNTs are endowed with
the first four characteristics of a USCA. CNTs have been injected
through intraperitoneal and intravenous routes in animal mod-
els; they are stable in different biological solutions and they can
be eliminated by renal or hepatobiliary clearance when appro-
priately functionalized (1, 3). Moreover, functionalized CNTs
were found to be not toxic in previous studies carried out by us
(12) and others (13, 14). In light of these considerations, the
present work was designed to test CNTs in conventional ultra-
sound imaging focusing on the assessment and characterization
of their echogenic properties.

Results
In this study we used multiwalled CNTs (MWCNTs) that were
first oxidized and subsequently functionalized by 1,3-dipolar cy-
cloaddition of azomethine ylides (ox-MWCNT-NH3

+) (Fig. S1)
to render them biocompatible (12, 15). These functionalized
MWCNTs have a diameter of 20–30 nm and an average length of
about 400 nm. For the ultrasound experiments, the nanotubes
were simply added to sterile ultrapure water or homogeneously
dispersed in sterile ultrapure water by bath sonication (see SI
Text for details). We initially tested the echogenic property of
functionalized CNTs at increasing doses without sonication
treatment. Fig. 1A shows visible nanomaterial depositions at the
bottom of the wells at 100 and 1,000 µg/mL. The white arrows in
the corresponding ultrasound images indicate a visible and
strong ultrasound signal at the highest concentrations of the
tubes (Fig. 1B). The intensity of the ultrasound signal was dose-
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dependent (Fig. 1C). As for biomedical uses, it is necessary to ob-
tain highly homogenous dispersions; we then tested the echogenic
properties of MWCNTs after sonication. Functionalized CNTs

became clearly highly dispersed in water (Fig. 1D). Dispersibility
of ox-MWCNT-NH3

+ was persistent; the tube dispersions were
stable for several days. The white area visible in the equivalent
ultrasound image suggests the high echogenicity of sonicated
functionalized MWCNTs (Fig. 1E) The ultrasound signal in
dispersed MWCNTs was three-times more intense than plain
water used as negative control (38.6 vs. 125.0, respectively; P <
0.05) (Fig. 1F).
Next, we wanted to assess the ability of CNTs to produce a

long-lived ultrasound signal (Fig. S2). The echogenic property of
MWCNTs was significantly higher (P < 0.05) compared with
water after more than 60 min of ultrasound irradiation; data also
prove their ability to emit under continuative pulsed sounds. We
then decided to compare ox-MWCNT-NH3

+ with the precursor
pristine nanotubes and graphene oxide (GO) (Fig. 2), an
emerging form of carbon explored for biomedical applications
(16) and materials science (17). All carbon nanomaterials were
sonicated. Although GO can be easily dispersed using the same
conditions of CNTs, only functionalized CNT dispersions in water
were highly homogenous and stable (at least for more than 24 h)
(Fig. 2A), as visible in the corresponding ultrasonography image as
well (Fig. 2B). Image mean values in terms of gray shade dem-
onstrate that MWCNTs generated a higher signal compared with
GO (109.6 ± 6.1 vs. 77.6 ± 6.5, respectively; P < 0.0.5). Moreover,
as expected, the signal from the functionalized CNTs after soni-
cation treatment was more homogeneous (Fig. 2C). To further
investigate the different types of nanotubes we have evaluated the
possible differences between SWCNTs and MWCNTs in terms of
echogenic properties. We performed a comparative experiment
using SWCNTs oxidized and then modified by 1,3-dipolar cyclo-
addition of azomethine ylides as MWCNTs (Fig. S3). The image
analysis showed a statistically significant difference (P < 0.05),
indicating that the multiwalled nanotubes are more echogenic
compared with the single-walled nanotubes.
To better characterize the quality of CNT signal, we compared

functionalized MWCNTs with the commercially available ultra-
sound contrast agent SonoVue. SonoVue consists of microbubbles
containing sulfur hexafluoride in a perfluorocarbon inactive gas
(18). SonoVue and CNTs were both clearly echogenic (Fig. S4).
From ultrasonography images (Fig. S4A), a nonstatistically sig-
nificant difference was observed on the intensity of the ultra-
sound signals between sulfur hexafluoride (68.3 ± 8.5) and
functionalized MWCNTs (72.6 ± 13.0), from three independent
experiments (Fig. S4B).
Stimulated by these results, we decided to evaluate in ex vivo

experiments if functionalized MWCNTs were visible by ultra-
sound imaging, selecting two pig organs. There are several
advantages in the use of swine in biomedical and pharmaceutical
research because they share with humans similar anatomic and
physiologic characteristics in their cardiovascular, digestive, and
urinary systems (19). A pig animal model was chosen because of
these anatomic similarities to humans, when compared with
other mammalian species. We first investigated if injected ox-
MWCNT-NH3

+ were visible in pig liver and heart on isolated
organs, because these organs have different tissue characteristics
(Fig. S5). Ultrasound images before and after injection of
MWCNTs were acquired using water as a negative control (Fig.
3 A and C). Functionalized CNTs were injected in the organ
using a dose of 300 µL at 1,000 µg/mL. The analysis of the ac-
quired images before and after injection is shown in Fig. 3 B and
D, respectively. The yellow arrows in Fig. 3 A and C indicate
a wide area with high echogenic intensity because of the pres-
ence of CNTs into the injected organs. For both types of organs,
we then calculated a subtraction image between the ultrasound
image taken after water injections and the image taken before
injection. We performed the same type of calculation for
MWCNTs. Ultrasound signaling of MWCNTs was significantly
higher, more than 20-times, compared with water in both the
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Fig. 1. Ultrasound detection of functionalized MWCNTs before and after
sonication. (A) Photographs of water and MWCNTs (1–1,000 µg/mL) without
applying sonication in a 96-well plate. (B) The corresponding ultrasound
images of A. (C) Calculation of the ultrasound signal on different images
(analyzed pixel = 2,928). Water was used as negative control and its signal
was subtracted. (D) Photographs of water and MWCNTs (at 1,000 µg/mL)
after the sonication process. (E) The corresponding ultrasound images of D.
(F) Calculation of the ultrasound signal (analyzed pixel = 6,489). The ultra-
sound signal is reported in 8-bit gray scale intensity from 0 to 255 shades of
gray recordable. Signal intensity was calculated on measurements of three
investigations. The error bars represent the SD (n = 3); *P < 0.05. A, B, D, and
E are representative images of three independent experiments.
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liver and heart (*P < 0.05). MWCNTs consist of rolled up
concentric graphene layers, like in graphite sheets. The chemical
nature of CNTs is very similar to graphite. It is reported in the
literature that graphite has an acoustic impedance of 2.71 Mrayl
(20), which is much higher than that of organs such as liver and
heart (1.64 and 1.75 Mrayl, respectively) (21). Moreover, graphite
has mechanical properties in terms of density (ρ) and velocity of
sound (c) (ρg = 2267 kg·m−3, cg = 18,350 m·s−1) that strongly differ
from those of biological tissues (ρbiol ∼1,000 kg·m−3, cbiol ∼1500
m·s−1) (22, 23). For its acoustic properties, graphite has been
previously investigated as an ultrasonic transcutaneous energy

transfer (22). On the basis of the high similarity between CNTs
and graphite, we can conclude that the difference in signal values
for CNTs (with high acoustic impedance) compared with the
ultrasounds produced by the tissues (with low acoustic imped-
ance) was clearly a result of the intrinsic chemico-physical prop-
erties (24) of the nanotubes, as also observed in Fig. 2. The actual
mechanism with which CNTs generate the acoustic signal is not
known and requires further investigation. We can exclude, for
example, that the signal derives from the liberation of small
bubbles entrapped in the inner space of the nanotubes (i.e., there
was no difference using degassed or nondegassed samples). On
the other hand, we cannot rule out that functionalized CNTs
behave as the center of nucleation of air bubbles, eventually
leading to an intense echogenic signal.
In view of the results obtained from the ex vivo experiments

using CNTs (Fig. 3), we decided to compare functionalized
MWCNTs to SonoVue in liver and heart (Fig. S6). The primary
application of SonoVue is aimed at the characterization of focal
liver lesions (25). We confirmed the results in solution (Fig. S4)
by quantifying the ultrasound responses in both the liver and
heart (Fig. S6). Although we found a statistically significant
difference between SonoVue and MWCNTs in the heart (Fig. S6
C and D), the echogenic signals in the liver were of the same
intensity, supporting the potential use of functionalized CNTs for
imaging this type of organ (Fig. S6 A and B). To date, the large
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A. (C) Graphs derived from the image analysis (analyzed pixel = 6,962). The
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on 8-bit scale intensity from 0 to 255. Mean intensity reported for all samples
(top right numbers in each panel) are representative of three investigations.
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Fig. 3. Ultrasound detection of functionalized MWCNTs ex vivo in liver and
heart from pigs. (A and C) Ultrasound images of liver and heart. In gray and
black rectangles (Upper) are represented the images before and after in-
jection of 300 µL water; in gray and red rectangles (Lower) are represented
the images before and after injection of 300 µL of functionalized MWCNTs
at 1,000 µg/mL concentration. Green arrow indicates the tip of syringe be-
fore injection. Yellow arrow indicates a higher ultrasound signal after in-
jection of MWCNTs. (Scale bars, 5 mm.) (B and D) Signal analysis in liver and
heart after the echogenicity subtraction of images before injection, for
water and MWCNTs (*P < 0.01) (analyzed pixel: liver = 30,810; heart =
26,880). Ultrasound signal is reported in 8-bit gray scale intensity from 0 to
255 shades of recordable gray. Ultrasound signal was calculated on meas-
urements of experiments performed in three different livers and three
hearts from healthy pigs. The error bars represent SD (n = 3). Ultrasound
images are representative data of three investigations.
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majority of USCAs can only be used at frequencies < 5 MHz; as
such, there is an increasing interest in extending contrast imaging
to high frequencies useful for superficial tissue, such as carotid
and breast (26, 27). For this reason, we would like to emphasize
that for all data reported above, we did ultrasound scans using
a 12.5-MHz frequency, applying the tissue harmonic imaging
(THI) modality. To investigate if MWCNTs were detectable
without THI and at different frequencies, we used a bladder
phantom (Fig. S7). CNTs, first injected in the bladder phantom
and detected at 12.5 MHz in THI modality, were bright and
evident (Movie S1). Without THI CNTs were hardly visible at
12.5 MHz. However, reducing the frequencies, without using
THI, the nanotubes were again clearly recognizable at 10, 8, and
5.5 MHz (Fig. S7).
As a last step, we decided to move to in vivo experiments,

focusing on swine bladder as example of an abdominal organ in
terms of depth into the body. We again used pigs as an animal
model because swine is an ideal model this purpose as well (28).
Female healthy pigs were anesthetized with azaperone (Fig. S8)
(see SI Text for details). Then we performed an intravesical ad-
ministration of MWCNTs (Fig. 4) under ultrasound guide. ox-
MWCNT-NH3

+ were used at a concentration of 1,000 µg/mL,
one of the highest doses used on animal models that, for ex-
ample, has not provoked detectable effect on mice (29). Fig. 4A
displays the pig bladder before MWCNT injection. In Fig. 4B we
show a wide echogenic area recovered after completed nanotube
injection. These in vivo data confirmed the results obtained in
vitro and ex vivo in liver and heart. We have to emphasize that
for this experiment we used a convex probe (2.5–5 MHz),
proving that the wide variety of frequencies with functionalized
MWCNTs can be visualized, with the possibility of using them
for superficial and abdominal organs. A urine sample after
bladder injection with MWCNTs were collected and analyzed by
transmission electron microscopy (TEM) (Fig. S9). TEM images
show MWCNTs in pig urine, proving that this nanomaterial was
easily eliminated. In addition, to confirm that functionalized
MWCNTs can be used with different routes of administration,
we investigated their echogenicity property on whole pig blood
ex vivo (Fig. S10) and in vivo by intravenous injection (Movie
S2). We observed that MWCNTs were clearly detectable in
blood. In Movie S2 the CNTs are clearly visible during the in-
jection in the anterior vena cava as bright white spots (see bot-
tom right side of the movie and Fig. S11). Based on several
factors supporting the idea that pigs represent the ideal model
and meet the challenges of future emerging technologies and
toxicology (30), we investigated the possible toxic effects of
MWCNTs after injection (see SI Text for details). An autopsy
after 7 d on the animals did not reveal any sign of illness. In
particular, the bladder post mortem appeared to be in normal
condition (Fig. S12). Histology and immunophenotypic charac-
terization of inflammatory cells was performed on kidney and
bladder (Fig. 5). Histological investigation indicated no kidney
and bladder inflammation or necrosis (Fig. 5A). In immunohis-
tochemistry assays, no CD3+ and CD79+ cells were observed in
the urinary bladder’s wall and renal papilla, and few CD163
macrophages were present in the mucosa of the bladder, as
commonly observed in healthy pigs (Fig. 5B). Histology was also
performed on the liver, renal cortex, lung, and heart (Fig. S13).
Again, MWCNTs did not exert adverse effects on these organs.
Furthermore, the analysis of blood, including complete blood
count and chemical profile, before the experiments and after
1 wk following ultrasonography, indicated that blood values were
in normal range after MWCNT bladder injection (Table S1).
Our data confirm previous studies showing that CNTs, appro-
priately functionalized, are nontoxic both in vitro toward dif-
ferent cell types and in vivo in mouse models (12, 29, 31, 32). The
main purpose of the overall study was to investigate functional-
ized MWCNTs as USCAs. The acquired toxicity data were

aimed only to prove the biocompatibility of CNTs used in these
experiments. Obviously, in the future, it will be appropriate to
perform additional experiments on the impact of CNTs in swine
using a higher number of animals with additional time points of
analysis and reduced doses of nanotubes.

Discussion
Pilot studies reported the applications of CNTs as photoacoustic
imaging agents (9, 10). Photoacoustic imaging is currently a hot
topic in scientific research but, according to Wang and Hu, we
have to remember that clinical systems need to pass rigorous
validations, and photoacoustic imaging has just started being
used in humans (33). Because the technique itself needs to pass
further proof for applications in every day clinical practice, it
may be difficult, in the near future, to image CNTs as photo-
acoustic agents. Ultrasonography is instead a low-cost imaging
tool widely used in clinic diagnosis and with an old history in
medicine. We have demonstrated that functionalized CNTs can

Fig. 4. Ultrasound detection of functionalized MWCNTs in vivo. (A) Bladder
ultrasound detection before MWCNT injection. (B) MWCNTs were injected
into the bladder (5 mL, at 1,000 µg/mL concentration). The images are rep-
resentative results of two investigations in healthy pigs. (Scale bar, 5 mm.)
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be developed as promising and suitable materials for ultrasound
imaging, having all necessary characteristics of a regular USCA. In
addition, CNTs may have additional advantages toward very prom-
ising possibilities for the future of ultrasonography. The size of the
majority microbubble-based ultrasound contrast agent (1–8 µm)
renders them purely intravascular flow tracers. In contrast, the
chemico-physical characteristics ofCNTs (i.e., 400nm in length in the
present study), make them potentially able to extravasate and reach
a tumor region, which can exhibit a vascular pore size up to 780 nm
(34). The small size of CNTs will be of great advantage, considering
their ability to cross the endothelial barriers and, as targetable
materials, to reach a tumor region, at the same timebeing vehicles for
therapeutic agents (1, 3).USCAs are classified as long half-life agents
when the signal persists for more than 5 min after an intravenous
bolus injection (35). Most of the USCAs are eliminated in few
minutes through the lungs. We previously observed functionalized
CNT blood clearance in mice at 3 h postinjection (36). This finding
suggests the possibility to use CNTs in case of long ultrasonography
investigations eventually associated with therapeutic purposes.
Within this context, few pilot studies have proposed the combination
of microbubble USCAs with a therapeutic load or with targeting
compounds (37–39). Research focusing on microbubbles as a drug
delivery system and targetable compounds is rather limited and at an
early stage of development, compared with the literature proposing
CNTs as drug-delivery systems (3, 40–42). In addition, little work has
been carried out on other types of nanomaterials and nanoparticles,
including silica nanoparticles (43), iron oxide nanoparticles (44), and
PEGylated nanocapsules (45) as possible ultrasound contrast

agents. Aside from these studies, and keeping in mind possible
future developments of nanoparticles acting as USCAs being able
to target specific cells and deliver a drug, CNTs remain one of the
most promising nanomaterials because of their extremely high
aspect ratio (length/diameter ratio) and their easy capacity to
penetrate cell membranes without exerting toxic effects. In addi-
tion, the possibility to link to the nanotubes different molecules in
a multifunctional approach and in a precise chemical-controlled
manner (46) is also another characteristic that is being considered
for future construction of multimodal nanomaterials. Indeed,
multifunctionalized CNTs can offer both imaging and therapeutic
capabilities. The new field of theranostics concerns the de-
velopment of materials with concurrent and complementary
therapeutic and diagnostic features (47). On the basis of the
echogenic property that we have devised in the present work, it will
be highly beneficial for the future development of functionalized
CNTs as new targeted ultrasound contrast agents combined with
therapeutic compounds.
In summary, we have shown that functionalized MWCNTs can

be imaged in ultrasonography. A time course using continuative
ultrasounds proved that the echogenic property is not affected by
ultrasound irradiation. We have demonstrated that MWCNTs
display a high signal compared with GO, pristine, and function-
alized single-walled nanotubes. The signal emitted from this type
of tube is not different, in terms of brightness, from the common
contrast agent SonoVue. We also assessed the echogenic prop-
erty of MWCNTs ex vivo in the liver and heart. We have shown
that, in contrast to the majority of current USCAs, CNTs were well
visible at high frequencies that are advantageous for imaging su-
perficial tissues. Finally, we have performed an in vivo intravesical
MWCNT injection using a convex probe that works at low fre-
quencies, from 2.5 to 5 MHz. Our nanomaterials were clearly vis-
ible in the bladder, proving that functionalized MWCNTs can be
seen as very versatile USCAs in terms of useable frequencies.
Animal autopsy, histology, immunostaining, blood counts, and
chemical profile supported that CNTs did not affect the pig’s health.
We would like to point out, however, that the toxicity of CNTs is still
an important issue, not completely solved (48–51). Concerns
about the biocompatibility of nanocarbons are under debate. As a
key point, a clear distinction needs to be made between the behavior
of functionalized CNTs and pristine nanotubes in terms of health
impact, with a favorable outcome in the case of the former (1, 3).
We expect that the proof-of-concept on the echogenic property

of functionalized MWCNTs described in this work will allow fu-
ture studies focused on CNTs as ideal theranostic nanoparticles,
combining the following features: targetable materials, drug car-
riers, drug delivery enhancers, and ultrasound contrast agents.

Materials and Methods
Carbon Materials. MWCNTs (20–30 nm diameter, 0.5–2 µm length, 95% pu-
rity; batch 1240XH) were purchased from Nanostructured and Amorphous
Materials. Pristine nanotubes were initially oxidized to obtain ox-MWCNTs
and subsequently submitted to the 1,3-dipolar cycloaddition reaction to
generate positively charged ammonium functionalized ox-MWCNT-NH3

+,
as previously described (12). GO (batch GO.Z-10.2–12) was purchased from
NanoInnova Technologies. HiPCO SWCNTs were purchased from Carbon
Nanotechnologies (lot R0496). Pristine nanotubes were initially oxidized to
obtain ox-SWCNTs (52) and subsequently submitted to the 1,3-dipolar cyclo-
addition reaction to generate positively charged ammonium functionalized
ox-SWCNT-NH3

+; the synthesis procedure and characterization were the
same as the multiwalled nanotubes. Details on the preparation of the car-
bon nanomaterial dispersions and TEM analysis are reported in SI Text.

Ultrasound Imaging. TechnosMPX (Esoate) was used for all of the experiments
(B mode). Images in Figs. 1 and 2, and Figs. S2 and S3 were recorded with a
7.5- to 12-MHz linear probe; the instrument was set in conventional ultra-
sound modality (B mode), THI mode, depth 31 mm, gain 255, −1.3 dB, and
mechanical index 0.9. Contrast tuned imaging (CnTi) software (Esoate) was
used to analyze the signal coming from the SonoVue (Bracco) in Figs. S4 and
S6. Data for MWCNTs illustrated in Fig. S6 were recorded with an instrument
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Fig. 5. Histology and immunohistochemistry of kidney and bladder. (A)
Paraffin-embedded sections stained with H&E of kidney (renal papilla) and
bladder after 7 d from the MWCNT injection. The images are representative
results of three investigations. (Scale bar, 100 µm.) (B) Inflammatory cell
immunophenotyping in serial paraffin-embedded sections of urinary blad-
der and kidney, at the inner zone of the medulla (papilla). CD3, CD79, and
CD163 were used as markers for T and B lymphocytes and activated mac-
rophages, respectively. A normal swine palatine tonsil is also shown as
positive control. Immune reactions were visualized by 3,3′-diaminobenzidine
chromogen, Mayer’s hematoxylin counterstaining. The images are repre-
sentative results of three investigations. (Scale bar, 100 µm.)
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set in B mode, CnTi in fundamental imaging, depth 31 mm, gain 130, and
mechanical index 0.071. Images in Fig. 3 were recorded with a 7.5- to 12-
MHz linear probe; the instrument was set in B mode, THI, depth 21 mm, gain
225, −1.3 dB, and mechanical index 1.0. The experiment in Fig. 4 was per-
formed using a 2.5- to 5-MHz convex probe; the instrument was set in B
mode, THI, depth 77 mm, gain 155, −1.4 dB, and mechanical index 0.7. The
experiment displayed in Fig. S10 was performed using a 7.5- to 12-MHz
linear probe; the instrument was set in B mode, THI, depth 21 mm, gain 255,
−1.3 dB, and mechanical index 1.0. In all ultrasound experiments the probe
was placed above the examined sample and oriented perpendicular to the
plate, organ, or phantom bladder (see also Fig. S5 for the injection modality
into ex vivo organs). To exclude that possible air bubbles, present in the
dispersions of the nanotubes, might generate an echogenic signal, an ul-
trasonography experiment with water-degassed samples was performed.
Movie S1 was recorded with a 7.5- to 12-MHz linear probe in B mode, THI,
depth 41 mm, gain 170, −1.3 db and 0.9 of mechanical index. Movie S2 was

recorded using a 7.5- to 12-MHz linear probe; the instrument was set in B
mode, THI, depth 41 mm, gain 150, −1.3 dB, and mechanical index 1.8. Details
on the ultrasound image analysis, animal procedures, histopathology and
immunophenotypic characterization, and statistics are reported in SI Text.
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