163 research outputs found

    A New Life in Montana: The Laotian Hmong -- their History, Culture and American Journey

    Get PDF
    Keightley, David, M.A., May 2010 History A New Life in Montana: The Laotian Hmong – Their History, Culture and American Journey Chairperson: Michael Mayer Following the end of the Vietnam War, hundreds of thousands of Vietnamese, Laotian and Cambodian refugees fled their homelands for America, where they started their lives over again. This paper examines the immigration of Hmong hill-tribesmen from Laos to the United States and their adjustment to a new life in America, particularly in the small community of Missoula Montana. How did they acculturate to such a very different environment from what they had known in Laos, and how successful have they been in America up to this time? The Hmong were among the most recent émigrés to America’s shores, and though their experience was unique, it was not wholly without parallel. The experiences of millions of Eastern and Southern Europeans, the so called “the new immigrants,” around the turn of the twentieth century, throw light on what Hmong immigrants may be going through now. The paper traces Hmong history from ancient times in China, up through their migration into Vietnam and Laos and their involvement in the Vietnam War as American allies. Based on interviews with first, middle and second generation Hmong in Missoula, on interviews with Americans who worked with the Hmong in Montana, on local newspaper accounts, and high school and college records, the paper argues that the Hmong in Missoula have successfully adapted to living in Montana. They have done well in school, established themselves economically, and adjusted to life in the United States. Cultural attributes have helped them to survive and succeed in a place very different from their homeland. The influence of culture on educational, vocational and economic mobility has been noted by other historians. This paper agrees with historical studies that suggest a link between culture and immigrants’ strategies for success in America

    The estrogen receptor and its role in mammary tumour induction in rats treated with dimethylbenz (a) anthraune.

    Get PDF
    Dept. of Biological Sciences. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1973 .K33. Source: Dissertation Abstracts International, Volume: 62-13, Section: A. Thesis (Ph.D.)--University of Windsor (Canada), 1974

    Direct Estimation of the Mitochondrial DNA Mutation Rate in Drosophila melanogaster

    Get PDF
    Mitochondrial DNA (mtDNA) variants are widely used in evolutionary genetics as markers for population history and to estimate divergence times among taxa. Inferences of species history are generally based on phylogenetic comparisons, which assume that molecular evolution is clock-like. Between-species comparisons have also been used to estimate the mutation rate, using sites that are thought to evolve neutrally. We directly estimated the mtDNA mutation rate by scanning the mitochondrial genome of Drosophila melanogaster lines that had undergone approximately 200 generations of spontaneous mutation accumulation (MA). We detected a total of 28 point mutations and eight insertion-deletion (indel) mutations, yielding an estimate for the single-nucleotide mutation rate of 6.2 × 10−8 per site per fly generation. Most mutations were heteroplasmic within a line, and their frequency distribution suggests that the effective number of mitochondrial genomes transmitted per female per generation is about 30. We observed repeated occurrences of some indel mutations, suggesting that indel mutational hotspots are common. Among the point mutations, there is a large excess of G→A mutations on the major strand (the sense strand for the majority of mitochondrial genes). These mutations tend to occur at nonsynonymous sites of protein-coding genes, and they are expected to be deleterious, so do not become fixed between species. The overall mtDNA mutation rate per base pair per fly generation in Drosophila is estimated to be about 10× higher than the nuclear mutation rate, but the mitochondrial major strand G→A mutation rate is about 70× higher than the nuclear rate. Silent sites are substantially more strongly biased towards A and T than nonsynonymous sites, consistent with the extreme mutation bias towards A+T. Strand-asymmetric mutation bias, coupled with selection to maintain specific nonsynonymous bases, therefore provides an explanation for the extreme base composition of the mitochondrial genome of Drosophila

    The Effect of Transposable Element Insertions on Gene Expression Evolution in Rodents

    Get PDF
    Background:Many genomes contain a substantial number of transposable elements (TEs), a few of which are known to be involved in regulating gene expression. However, recent observations suggest that TEs may have played a very important role in the evolution of gene expression because many conserved non-genic sequences, some of which are know to be involved in gene regulation, resemble TEs. Results:Here we investigate whether new TE insertions affect gene expression profiles by testing whether gene expression divergence between mouse and rat is correlated to the numbers of new transposable elements inserted near genes. We show that expression divergence is significantly correlated to the number of new LTR and SINE elements, but not to the numbers of LINEs. We also show that expression divergence is not significantly correlated to the numbers of ancestral TEs in most cases, which suggests that the correlations between expression divergence and the numbers of new TEs are causal in nature. We quantify the effect and estimate that TE insertion has accounted for ~20% (95% confidence interval: 12% to 26%) of all expression profile divergence in rodents. Conclusions:We conclude that TE insertions may have had a major impact on the evolution of gene expression levels in rodents

    A modified Wright-Fisher model that incorporates Ne: A variant of the standard model with increased biological realism and reduced computational complexity.

    Get PDF
    The Wright-Fisher model is an important model in evolutionary biology and population genetics. It has been applied in numerous analyses of finite populations with discrete generations. It is recognised that real populations can behave, in some key aspects, as though their size that is not the census size, N, but rather a smaller size, namely the effective population size, Ne. However, in the Wright-Fisher model, there is no distinction between the effective and census population sizes. Equivalently, we can say that in this model, Ne coincides with N. The Wright-Fisher model therefore lacks an important aspect of biological realism. Here, we present a method that allows Ne to be directly incorporated into the Wright-Fisher model. The modified model involves matrices whose size is determined by Ne. Thus apart from increased biological realism, the modified model also has reduced computational complexity, particularly so when Ne⪡N. For complex problems, it may be hard or impossible to numerically analyse the most commonly-used approximation of the Wright-Fisher model that incorporates Ne, namely the diffusion approximation. An alternative approach is simulation. However, the simulations need to be sufficiently detailed that they yield an effective size that is different to the census size. Simulations may also be time consuming and have attendant statistical errors. The method presented in this work may then be the only alternative to simulations, when Ne differs from N. We illustrate the straightforward application of the method to some problems involving allele fixation and the determination of the equilibrium site frequency spectrum. We then apply the method to the problem of fixation when three alleles are segregating in a population. This latter problem is significantly more complex than a two allele problem and since the diffusion equation cannot be numerically solved, the only other way Ne can be incorporated into the analysis is by simulation. We have achieved good accuracy in all cases considered. In summary, the present work extends the realism and tractability of an important model of evolutionary biology and population genetics

    A comparison in a youth population between those with and without a history of concussion using biomechanical reconstruction

    Get PDF
    OBJECTIVE: Concussion is a common topic of research as a result of the short- and long-term effects it can have on the affected individual. Of particular interest is whether previous concussions can lead to a biomechanical susceptibility, or vulnerability, to incurring further head injuries, particularly for youth populations. The purpose of this research was to compare the impact biomechanics of a concussive event in terms of acceleration and brain strains of 2 groups of youths: those who had incurred a previous concussion and those who had not. It was hypothesized that the youths with a history of concussion would have lower-magnitude biomechanical impact measures than those who had never suffered a previous concussion. METHODS: Youths who had suffered a concussion were recruited from emergency departments across Canada. This pool of patients was then separated into 2 categories based on their history of concussion: those who had incurred 1 or more previous concussions, and those who had never suffered a concussion. The impact event that resulted in the brain injury was reconstructed biomechanically using computational, physical, and finite element modeling techniques. The output of the events was measured in biomechanical parameters such as energy, force, acceleration, and brain tissue strain to determine if those patients who had a previous concussion sustained a brain injury at lower magnitudes than those who had no previously reported concussion. RESULTS: The results demonstrated that there was no biomechanical variable that could distinguish between the concussion groups with a history of concussion versus no history of concussion. CONCLUSIONS: The results suggest that there is no measureable biomechanical vulnerability to head impact related to a history of concussions in this youth population. This may be a reflection of the long time between the previous concussion and the one reconstructed in the laboratory, where such a long period has been associated with recovery from injury

    Faster than Neutral Evolution of Constrained Sequences: The Complex Interplay of Mutational Biases and Weak Selection

    Get PDF
    Comparative genomics has become widely accepted as the major framework for the ascertainment of functionally important regions in genomes. The underlying paradigm of this approach is that most of the functional regions are assumed to be under selective constraint, which in turn reduces the rate of evolution relative to neutrality. This assumption allows detection of functional regions through sequence conservation. However, constraint does not always lead to sequence conservation. When purifying selection is weak and mutation is biased, constrained regions can even evolve faster than neutral sequences and thus can appear to be under positive selection. Moreover, conservation estimates depend also on the orientation of selection relative to mutational biases and can vary over time. In the light of recent data of the ubiquity of mutational biases and weak selective forces, these effects should reduce the power of conservation analyses to define functional regions using comparative genomics data. We argue that the estimation of true mutational biases and the use of explicit evolutionary models are essential to improve methods inferring the action of natural selection and functionality in genome sequences

    Nearly neutral evolution across the Drosophila melanogaster genome

    Get PDF
    Under the nearly neutral theory of molecular evolution, the proportion of effectively neutral mutations is expected to depend upon the effective population size (Ne). Here, we investigate whether this is the case across the genome of Drosophila melanogaster using polymorphism data from North American and African lines. We show that the ratio of the number of nonsynonymous and synonymous polymorphisms is negatively correlated to the number of synonymous polymorphisms, even when the nonindependence is accounted for. The relationship is such that the proportion of effectively neutral nonsynonymous mutations increases by ∼45% as Ne is halved. However, we also show that this relationship is steeper than expected from an independent estimate of the distribution of fitness effects from the site frequency spectrum. We investigate a number of potential explanations for this and show, using simulation, that this is consistent with a model of genetic hitchhiking: Genetic hitchhiking depresses diversity at neutral and weakly selected sites, but has little effect on the diversity of strongly selected sites
    corecore