5 research outputs found

    Ευρετικές προσεγγίσεις του μοναδιάστατου προβλήματος πακετοποίησης

    Get PDF
    Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and non-pleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data

    The regulation of circadian clocks by light in fruitflies and mice.

    No full text
    A circadian clock has no survival value unless biological time is adjusted (entrained) to local time and, for most organisms, the profound changes in the light environment provide the local time signal (zeitgeber). Over 24 h, the amount of light, its spectral composition and its direction change in a systematic way. In theory, all of these features could be used for entrainment, but each would be subject to considerable variation or 'noise'. Despite this high degree of environmental noise, entrained organisms show remarkable precision in their daily activities. Thus, the photosensory task of entrainment is likely to be very complex, but fundamentally similar for all organisms. To test this hypothesis we compare the photoreceptors that mediate entrainment in both flies and mice, and assess their degree of convergence. Although superficially different, both organisms use specialized (employing novel photopigments) and complex (using multiple photopigments) photoreceptor mechanisms. We conclude that this multiplicity of photic inputs, in highly divergent organisms, must relate to the complex sensory task of using light as a zeitgeber

    Substitution

    No full text
    corecore