442 research outputs found

    DNA-Destabilizing Agents as an Alternative Approach for Targeting DNA: Mechanisms of Action and Cellular Consequences

    Get PDF
    DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs). The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy

    New insights on the mechanism of quinoline-based DNA methyltransferase inhibitors

    Get PDF
    Among the epigenetic marks, DNA methylation is one of the most studied. It is highly deregulated in numerous diseases, including cancer. Indeed, it has been shown that hypermethylation of tumor suppressor genes promoters is a common feature of cancer cells. Because DNA methylation is reversible, the DNA methyltransferases (DNMTs), responsible for this epigenetic mark, are considered promising therapeutic targets. Several molecules have been identified as DNMT inhibitors and, among the non-nucleoside inhibitors, 4-aminoquinoline-based inhibitors, such as SGI-1027 and its analogs, showed potent inhibitory activity. Here we characterized the in vitro mechanism of action of SGI-1027 and two analogs. Enzymatic competition studies with the DNA substrate and the methyl donor cofactor, S-adenosyl-L-methionine (AdoMet), displayed AdoMet non-competitive and DNA competitive behavior. In addition, deviations from the Michaelis-Menten model in DNA competition experiments suggested an interaction with DNA. Thus their ability to interact with DNA was established; although SGI-1027 was a weak DNA ligand, analog 5, the most potent inhibitor, strongly interacted with DNA. Finally, as 5 interacted with DNMT only when the DNA duplex was present, we hypothesize that this class of chemical compounds inhibit DNMTs by interacting with the DNA substrate

    The Unusual Monomer Recognition of Guanine-Containing Mixed Sequence DNA by a Dithiophene Heterocyclic Diamidine

    Get PDF
    DB1255 is a symmetrical diamidinophenyl-dithiophene that exhibits cellular activity by binding to DNA and inhibiting binding of ERG, an ETS family transcription factor that is commonly overexpressed or translocated in leukemia and prostate cancer [Nhili, R., Peixoto, P., Depauw, S., Flajollet, S., Dezitter, X., Munde, M. M., Ismail, M. A., Kumar, A., Farahat, A. A., Stephens, C. E., Duterque-Coquillaud, M., Wilson, W. D., Boykin, D. W., and David-Cordonnier, M. H. (2013) Nucleic Acids Res. 41, 125−138]. Because transcription factor inhibition is complex but is an attractive area for anticancer and antiparasitic drug development, we have evaluated the DNA interactions of additional derivatives of DB1255 to gain an improved understanding of the biophysical chemistry of complex function and inhibition. DNase I footprinting, biosensor surface plasmon resonance, and circular dichroism experiments show that DB1255 has an unusual and strong monomer binding mode in minor groove sites that contain a single GC base pair flanked by AT base pairs, for example, 5′-ATGAT-3′. Closely related derivatives, such as compounds with the thiophene replaced with furan or selenophane, bind very weakly to GC-containing sequences and do not have biological activity. DB1255 is selective for the ATGAT site; however, a similar sequence, 5′-ATGAC-3′, binds DB1255 more weakly and does not produce a footprint. Molecular docking studies show that the two thiophene sulfur atoms form strong, bifurcated hydrogen bond-type interactions with the G-N-H sequence that extends into the minor groove while the amidines form hydrogen bonds to the flanking AT base pairs. The central dithiophene unit of DB1255 thus forms an excellent, but unexpected, single-GC base pair recognition module in a monomer minor groove complex

    Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furan-benzimidazole dication

    Get PDF
    The development of small molecules to control gene expression could be the spearhead of future-targeted therapeutic approaches in multiple pathologies. Among heterocyclic dications developed with this aim, a phenyl-furan-benzimidazole dication DB293 binds AT-rich sites as a monomer and 5′-ATGA sequence as a stacked dimer, both in the minor groove. Here, we used a protein/DNA array approach to evaluate the ability of DB293 to specifically inhibit transcription factors DNA-binding in a single-step, competitive mode. DB293 inhibits two POU-domain transcription factors Pit-1 and Brn-3 but not IRF-1, despite the presence of an ATGA and AT-rich sites within all three consensus sequences. EMSA, DNase I footprinting and surface-plasmon-resonance experiments determined the precise binding site, affinity and stoichiometry of DB293 interaction to the consensus targets. Binding of DB293 occurred as a cooperative dimer on the ATGA part of Brn-3 site but as two monomers on AT-rich sites of IRF-1 sequence. For Pit-1 site, ATGA or AT-rich mutated sequences identified the contribution of both sites for DB293 recognition. In conclusion, DB293 is a strong inhibitor of two POU-domain transcription factors through a cooperative binding to ATGA. These findings are the first to show that heterocyclic dications can inhibit major groove transcription factors and they open the door to the control of transcription factors activity by those compounds

    Targeting the DNA-binding activity of the human ERG transcription factor using new heterocyclic dithiophene diamidines

    Get PDF
    Direct modulation of gene expression by targeting oncogenic transcription factors is a new area of research for cancer treatment. ERG, an ETS-family transcription factor, is commonly over-expressed or translocated in leukaemia and prostate carcinoma. In this work, we selected the di-(thiophene-phenylamidine) compound DB1255 as an ERG/DNA binding inhibitor using a screening test of synthetic inhibitors of the ERG/DNA interaction followed by electrophoretic mobility shift assays (EMSA) validation. Spectrometry, footprint and biosensor-surface plasmon resonance analyses of the DB1255/DNA interaction evidenced sequence selectivity and groove binding as dimer. Additional EMSA evidenced the precise DNA-binding sequence required for optimal DB1255/DNA binding and thus for an efficient ERG/DNA complex inhibition. We further highlighted the structure activity relationshipsfrom comparison with derivatives. In cellulo luciferase assay confirmed this modulation both with the constructed optimal sequences and the Osteopontin promoter known to be regulated by ERG and which ERG-binding site was protected from DNaseI digestion on binding of DB1255. These data showed for the first time the ERG/DNA complex modulation, both in vitro and in cells, by a heterocyclic diamidine that specifically targets a portion of the ERG DNA recognition site

    Probing cytochrome P450-mediated activation with a truncated azinomycin analogue

    Get PDF
    YesA deactivated alkene precursor (IC50=81 mu M) to the azinomycin epoxide natural product can be bioactivated by several cytochromes P450 (CYP) to generate antiproliferative metabolites with increased potency (IC50=1-30 mu M) in CHOwt cells. CYP1A1 and 3A4 were shown to generate exclusively the unnatural and the natural-configured azinomycin epoxide diastereoisomer respectively, while CYP1B1 produced both epoxides in a 3:1 mixture. The antiproliferative activity is linked to DNA damage as demonstrated using the comet assay

    Prevalence of Clinical and Neuroimaging Markers in Cerebral Amyloid Angiopathy: A Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND: Limited data exist regarding the prevalence of clinical and neuroimaging manifestations among patients diagnosed with cerebral amyloid angiopathy (CAA). We sought to determine the prevalence of clinical phenotypes and radiological markers in patients with CAA. METHODS: Systematic review and meta-analysis of studies including patients with CAA was conducted to primarily assess the prevalence of clinical phenotypes and neuroimaging markers as available in the included studies. Sensitivity analyses were performed based on the (1) retrospective or prospective study design and (2) probable or unspecified CAA status. We pooled the prevalence rates using random-effects models and assessed the heterogeneity using the Cochran Q and I2 statistics. RESULTS: We identified 12 prospective and 34 retrospective studies including 7159 patients with CAA. The pooled prevalence rates were cerebral microbleeds (52% [95% CI, 43%-60%]; I2=93%), cortical superficial siderosis (49% [95% CI, 38%-59%]; I2=95%), dementia or mild cognitive impairment (50% [95% CI, 35%-65%]; I2=97%), intracerebral hemorrhage (ICH; 44% [95% CI, 27%-61%]; I2=98%), transient focal neurological episodes (48%; 10 studies [95% CI, 29%-67%]; I2=97%), lacunar infarcts (30% [95% CI, 25%-36%]; I2=78%), high grades of perivascular spaces located in centrum semiovale (56% [95% CI, 44%-67%]; I2=88%) and basal ganglia (21% [95% CI, 2%-51%]; I2=98%), and white matter hyperintensities with moderate or severe Fazekas score (53% [95% CI, 40%-65%]; I2=91%). The only neuroimaging marker that was associated with higher odds of recurrent ICH was cortical superficial siderosis (odds ratio, 1.57 [95% CI, 1.01-2.46]; I2=47%). Sensitivity analyses demonstrated a higher prevalence of ICH (53% versus 16%; P=0.03) and transient focal neurological episodes (57% versus 17%; P=0.03) among retrospective studies compared with prospective studies. No difference was documented between the prevalence rates based on the CAA status. CONCLUSIONS: Approximately one-half of hospital-based cohort of CAA patients was observed to have cerebral microbleeds, cortical superficial siderosis, mild cognitive impairment, dementia, ICH, or transient focal neurological episodes. Cortical superficial siderosis was the only neuroimaging marker that was associated with higher odds of ICH recurrence. Future population-based studies among well-defined CAA cohorts are warranted to corroborate our findings
    corecore