422 research outputs found

    Events in Early Life are Associated with Female Reproductive Ageing: A UK Biobank Study.

    Get PDF
    The available oocyte pool is determined before birth, with the majority of oocytes lost before puberty. We hypothesised that events occurring before birth, in childhood or in adolescence ('early-life risk factors') could influence the size of the oocyte pool and thus the timing of menopause. We included cross-sectional data from 273,474 women from the UK Biobank, recruited in 2006-2010 from across the UK. We analysed the association of early menopause with events occurring before adulthood in 11,781 cases (menopause aged under 45) and 173,641 controls (menopause/pre-menopausal at ≥ 45 years), in models controlling for potential confounding variables. Being part of a multiple birth was strongly associated with early menopause (odds ratio = 1.42, confidence interval: 1.11, 1.82, P = 8.0 × 10(-9), fully-adjusted model). Earlier age at menarche (odds ratio = 1.03, confidence interval: 1.01, 1.06, P = 2.5 × 10(-6)) and earlier year of birth were also associated with EM (odds ratio = 1.02, confidence interval: 1.00, 1.04, P = 8.0 × 10(-6)). We also confirmed previously reported associations with smoking, drinking alcohol, educational level and number of births. We identified an association between multiple births and early menopause, which connects events pre-birth, when the oocyte pool is formed, with reproductive ageing in later life.This research has been conducted using the UK Biobank Resource. This work was generously supported by a Wellcome Trust Institutional Strategic Support Award [WT097835MF to University of Exeter].This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep2471

    Pathway Analysis of GWAS Provides New Insights into Genetic Susceptibility to 3 Inflammatory Diseases

    Get PDF
    Although the introduction of genome-wide association studies (GWAS) have greatly increased the number of genes associated with common diseases, only a small proportion of the predicted genetic contribution has so far been elucidated. Studying the cumulative variation of polymorphisms in multiple genes acting in functional pathways may provide a complementary approach to the more common single SNP association approach in understanding genetic determinants of common disease. We developed a novel pathway-based method to assess the combined contribution of multiple genetic variants acting within canonical biological pathways and applied it to data from 14,000 UK individuals with 7 common diseases. We tested inflammatory pathways for association with Crohn's disease (CD), rheumatoid arthritis (RA) and type 1 diabetes (T1D) with 4 non-inflammatory diseases as controls. Using a variable selection algorithm, we identified variants responsible for the pathway association and evaluated their use for disease prediction using a 10 fold cross-validation framework in order to calculate out-of-sample area under the Receiver Operating Curve (AUC). The generalisability of these predictive models was tested on an independent birth cohort from Northern Finland. Multiple canonical inflammatory pathways showed highly significant associations (p 10−3–10−20) with CD, T1D and RA. Variable selection identified on average a set of 205 SNPs (149 genes) for T1D, 350 SNPs (189 genes) for RA and 493 SNPs (277 genes) for CD. The pattern of polymorphisms at these SNPS were found to be highly predictive of T1D (91% AUC) and RA (85% AUC), and weakly predictive of CD (60% AUC). The predictive ability of the T1D model (without any parameter refitting) had good predictive ability (79% AUC) in the Finnish cohort. Our analysis suggests that genetic contribution to common inflammatory diseases operates through multiple genes interacting in functional pathways

    Neuroergonomic Assessment of Wheelchair Control Using Mobile fNIRS

    Get PDF
    For over two centuries, the wheelchair has been one of the most common assistive devices for individuals with locomotor impairments without many modifications. Wheelchair control is a complex motor task that increases both the physical and cognitive workload. New wheelchair interfaces, including Power Assisted devices, can further augment users by reducing the required physical effort, however little is known on the mental effort implications. In this study, we adopted a neuroergonomic approach utilizing mobile and wireless functional near infrared spectroscopy (fNIRS) based brain monitoring of physically active participants. 48 volunteers (30 novice and 18 experienced) self-propelled on a wheelchair with and without a PowerAssist interface in both simple and complex realistic environments. Results indicated that as expected, the complex more difficult environment led to lower task performance complemented by higher prefrontal cortex activity compared to the simple environment. The use of the PowerAssist feature had significantly lower brain activation compared to traditional manual control only for novices. Expertise led to a lower brain activation pattern within the middle frontal gyrus, complemented by performance metrics that involve lower cognitive workload. Results here confirm the potential of the Neuroergonomic approach and that direct neural activity measures can complement and enhance task performance metrics. We conclude that the cognitive workload benefits of PowerAssist are more directed to new users and difficult settings. The approach demonstrated here can be utilized in future studies to enable greater personalization and understanding of mobility interfaces within real-world dynamic environments

    Adult height variants affect birth length and growth rate in children

    Get PDF
    Previous studies identified 180 single nucleotide polymorphisms (SNPs) associated with adult height, explaining ∼10% of the variance. The age at which these begin to affect growth is unclear. We modelled the effect of these SNPs on birth length and childhood growth. A total of 7768 participants in the Avon Longitudinal Study of Parents and Children had data available. Individual growth trajectories from 0 to 10 years were estimated using mixed-effects linear spline models and differences in trajectories by individual SNPs and allelic score were determined. The allelic score was associated with birth length (0.026 cm increase per ‘tall’ allele, SE = 0.003, P = 1 × 10−15, equivalent to 0.017 SD). There was little evidence of association between the allelic score and early infancy growth (0–3 months), but there was evidence of association between the allelic score and later growth. This association became stronger with each consecutive growth period, per ‘tall’ allele per month effects were 0.015 SD (3 months–1 year, SE = 0.004), 0.023 SD (1–3 years, SE = 0.003) and 0.028 SD (3–10 years, SE = 0.003). By age 10, the mean height difference between individuals with ≤170 versus ≥191 ‘tall’ alleles (the top and bottom 10%) was 4.7 cm (0.8 SD), explaining ∼5% of the variance. There was evidence of associations with specific growth periods for some SNPs (rs3791675, EFEMP1 and rs6569648, L3MBTL3) and supportive evidence for previously reported age-dependent effects of HHIP and SOCS2 SNPs. SNPs associated with adult height influence birth length and have an increasing effect on growth from late infancy through to late childhood. By age 10, they explain half the height variance (∼5%) of that explained in adults (∼10%)

    Elevated expression of caspase-3 inhibitors, survivin and xIAP correlates with low levels of apoptosis in active rheumatoid synovium

    Get PDF
    Introduction: Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a tumour necrosis factor (TNF) family member capable of inducing apoptosis in many cell types. Methods: Using immunohistochemistry, terminal deoxynucleotidyl transferase biotin-dUTP nick end labelling (TUNEL) and real-time PCR we investigated the expression of TRAIL, TRAIL receptors and several key molecules of the intracellular apoptotic pathway in human synovial tissues from various types of arthritis and normal controls. Synovial tissues from patients with active rheumatoid arthritis (RA), inactive RA, osteoarthritis (OA) or spondyloarthritis (SpA) and normal individuals were studied. Results Significantly higher levels of TRAIL, TRAIL R1, TRAIL R2 and TRAIL R4 were observed in synovial tissues from patients with active RA compared with normal controls (p < 0.05). TRAIL, TRAIL R1 and TRAIL R4 were expressed by many of the cells expressing CD68 (macrophages). Lower levels of TUNEL but higher levels of cleaved caspase-3 staining were detected in tissue from active RA compared with inactive RA patients (p < 0.05). Higher levels of survivin and x-linked inhibitor of apoptosis protein (xIAP) were expressed in active RA synovial tissues compared with inactive RA observed at both the protein and mRNA levels. Conclusions: This study indicates that the induction of apoptosis in active RA synovial tissues is inhibited despite stimulation of the intracellular pathway(s) that lead to apoptosis. This inhibition of apoptosis was observed downstream of caspase-3 and may involve the caspase-3 inhibitors, survivin and xIAP.Anak ASSK Dharmapatni, Malcolm D Smith, David M Findlay, Christopher A Holding, Andreas Evdokiou, Michael J Ahern, Helen Weedon, Paul Chen, Gavin Screaton, Xiao N Xu and David R Hayne

    The functional "KL-VS" variant of KLOTHO is not associated with type 2 diabetes in 5028 UK Caucasians

    Get PDF
    BACKGROUND: Klotho has an important role in insulin signalling and the development of ageing-like phenotypes in mice. The common functional "KL-VS" variant in the KLOTHO (KL) gene is associated with longevity in humans but its role in type 2 diabetes is not known. We performed a large case-control and family-based study to test the hypothesis that KL-VS is associated with type 2 diabetes in a UK Caucasian population. METHODS: We genotyped 1793 cases, 1619 controls and 1616 subjects from 509 families for the single nucleotide polymorphism (SNP) F352V (rs9536314) that defines the KL-VS variant. Allele and genotype frequencies were compared between cases and controls. Family-based analysis was used to test for over- or under-transmission of V352 to affected offspring. RESULTS: Despite good power to detect odds ratios of 1.2, there were no significant associations between alleles or genotypes and type 2 diabetes (V352 allele: odds ratio = 0.96 (0.84–1.09)). Additional analysis of quantitative trait data in 1177 healthy control subjects showed no association of the variant with fasting insulin, glucose, triglycerides, HDL- or LDL-cholesterol (all P > 0.05). However, the HDL-cholesterol levels observed across the genotype groups showed a similar, but non-significant, pattern to previously reported data. CONCLUSION: This is the first large-scale study to examine the association between common functional variation in KL and type 2 diabetes risk. We have found no evidence that the functional KL-VS variant is a risk factor for type 2 diabetes in a large UK Caucasian case-control and family-based study

    Effects of the diabetes linked TCF7L2 polymorphism in a representative older population

    Get PDF
    BACKGROUND: A polymorphism in the transcription factor 7-like 2 (TCF7L2) gene has been found to be associated with type 2 diabetes in case-control studies. We aimed to estimate associations of the marker rs7903146 (C/T) polymorphism with fasting glucose, lipids, diabetes prevalence and complications in an older general population. METHODS: In total, 944 subjects aged ≥ 65 years from the population representative InCHIANTI study were enrolled in this study. Those with fasting blood glucose of ≥ 7 mmol/l or physician diagnosis were considered diabetic. Cut-off points for impaired fasting glucose (IFG) were ≥ 5.6 mmol/l to < 7 mmol/l. RESULTS: In the general population sample, minor (T) allele carriers of rs7903146 had higher fasting blood glucose (FBG) (p = 0.028) but lower fasting insulin (p = 0.030) and HOMA2b scores (p = 0.001), suggesting poorer beta-cell function. T allele carriers also had smaller waist circumference (p = 0.009), lower triglyceride levels (p = 0.006), and higher high-density lipoprotein cholesterol (p = 0.008). The prevalence of diabetes or IFG was 32.4% in TT carriers and 23.3% in CC carriers; adjusted OR = 1.67 (95% confidence interval 1.05 to 2.65, p = 0.031). Within the diabetic and IFG groups, fewer T allele carriers had metabolic syndrome features (p = 0.047) or had experienced a myocardial infarction (p = 0.037). Conversely, T allele carriers with diabetes had poorer renal function (reduced 24-hour creatinine clearance, p = 0.013), and possibly more retinopathy (p = 0.067). Physician-diagnosed dementia was more common in the T carriers (in diabetes p = 0.05, with IFG p = 0.024). CONCLUSION: The TCF7L2 rs7903146 polymorphism is associated with lower insulin levels, smaller waist circumference, and lower risk lipid profiles in the general elderly population. Patients with diabetes who are carriers of the minor allele are less likely to have metabolic-syndrome features, but may experience more microvascular complications, although the number of cases was small. If replicated, these findings may have implications for developing treatment approaches tailored by genotype

    Whole-genome sequencing to understand the genetic architecture of common gene expression and biomarker phenotypes.

    Get PDF
    Initial results from sequencing studies suggest that there are relatively few low-frequency (&lt;5%) variants associated with large effects on common phenotypes. We performed low-pass whole-genome sequencing in 680 individuals from the InCHIANTI study to test two primary hypotheses: (i) that sequencing would detect single low-frequency-large effect variants that explained similar amounts of phenotypic variance as single common variants, and (ii) that some common variant associations could be explained by low-frequency variants. We tested two sets of disease-related common phenotypes for which we had statistical power to detect large numbers of common variant-common phenotype associations-11 132 cis-gene expression traits in 450 individuals and 93 circulating biomarkers in all 680 individuals. From a total of 11 657 229 high-quality variants of which 6 129 221 and 5 528 008 were common and low frequency (&lt;5%), respectively, low frequency-large effect associations comprised 7% of detectable cis-gene expression traits [89 of 1314 cis-eQTLs at P &lt; 1 × 10(-06) (false discovery rate ∼5%)] and one of eight biomarker associations at P &lt; 8 × 10(-10). Very few (30 of 1232; 2%) common variant associations were fully explained by low-frequency variants. Our data show that whole-genome sequencing can identify low-frequency variants undetected by genotyping based approaches when sample sizes are sufficiently large to detect substantial numbers of common variant associations, and that common variant associations are rarely explained by single low-frequency variants of large effect
    corecore