193 research outputs found

    Contrast sensitivity of insect motion detectors to natural images

    Get PDF
    How do animals regulate self-movement despite large variation in the luminance contrast of the environment? Insects are capable of regulating flight speed based on the velocity of image motion, but the mechanisms for this are unclear. The Hassenstein–Reichardt correlator model and elaborations can accurately predict responses of motion detecting neurons under many conditions but fail to explain the apparent lack of spatial pattern and contrast dependence observed in freely flying bees and flies. To investigate this apparent discrepancy, we recorded intracellularly from horizontal-sensitive (HS) motion detecting neurons in the hoverfly while displaying moving images of natural environments. Contrary to results obtained with grating patterns, we show these neurons encode the velocity of natural images largely independently of the particular image used despite a threefold range of contrast. This invariance in response to natural images is observed in both strongly and minimally motion-adapted neurons but is sensitive to artificial manipulations in contrast. Current models of these cells account for some, but not all, of the observed insensitivity to image contrast. We conclude that fly visual processing may be matched to commonalities between natural scenes, enabling accurate estimates of velocity largely independent of the particular scene

    A `bright zone' in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity

    Get PDF
    Eyes of the hoverfly Eristalis tenax are sexually dimorphic such that males have a fronto-dorsal region of large facets. In contrast to other large flies in which large facets are associated with a decreased interommatidial angle to form a dorsal `acute zone' of increased spatial resolution, we show that a dorsal region of large facets in males appears to form a `bright zone' of increased light capture without substantially increased spatial resolution. Theoretically, more light allows for increased performance in tasks such as motion detection. To determine the effect of the bright zone on motion detection, local properties of wide field motion detecting neurons were investigated using localized sinusoidal gratings. The pattern of local preferred directions of one class of these cells, the HS cells, in Eristalis is similar to that reported for the blowfly Calliphora. The bright zone seems to contribute to local contrast sensitivity; high contrast sensitivity exists in portions of the receptive field served by large diameter facet lenses of males and is not observed in females. Finally, temporal frequency tuning is also significantly faster in this frontal portion of the world, particularly in males, where it overcompensates for the higher spatial-frequency tuning and shifts the predicted local velocity optimum to higher speeds. These results indicate that increased retinal illuminance due to the bright zone of males is used to enhance contrast sensitivity and speed motion detector responses. Additionally, local neural properties vary across the visual world in a way not expected if HS cells serve purely as matched filters to measure yaw-induced visual motion

    The motion after-effect: local and global contributions to contrast sensitivity

    Get PDF
    Motion adaptation is a widespread phenomenon analogous to peripheral sensory adaptation, presumed to play a role in matching responses to prevailing current stimulus parameters and thus to maximize efficiency of motion coding. While several components of motion adaptation (contrast gain reduction, output range reduction and motion after-effect) have been described, previous work is inconclusive as to whether these are separable phenomena and whether they are locally generated. We used intracellular recordings from single horizontal system neurons in the fly to test the effect of local adaptation on the full contrast-response function for stimuli at an unadapted location. We show that contrast gain and output range reductions are primarily local phenomena and are probably associated with spatially distinct synaptic changes, while the antagonistic after-potential operates globally by transferring to previously unadapted locations. Using noise analysis and signal processing techniques to remove ‘spikelets’, we also characterize a previously undescribed alternating current component of adaptation that can explain several phenomena observed in earlier studies

    Insect Detection of Small Targets Moving in Visual Clutter

    Get PDF
    Detection of targets that move within visual clutter is a common task for animals searching for prey or conspecifics, a task made even more difficult when a moving pursuer needs to analyze targets against the motion of background texture (clutter). Despite the limited optical acuity of the compound eye of insects, this challenging task seems to have been solved by their tiny visual system. Here we describe neurons found in the male hoverfly,Eristalis tenax, that respond selectively to small moving targets. Although many of these target neurons are inhibited by the motion of a background pattern, others respond to target motion within the receptive field under a surprisingly large range of background motion stimuli. Some neurons respond whether or not there is a speed differential between target and background. Analysis of responses to very small targets (smaller than the size of the visual field of single photoreceptors) or those targets with reduced contrast shows that these neurons have extraordinarily high contrast sensitivity. Our data suggest that rejection of background motion may result from extreme selectivity for small targets contrasting against local patches of the background, combined with this high sensitivity, such that background patterns rarely contain features that satisfactorily drive the neuron

    Antimicrobial Resistance in Humans and Animals: Rapid Review of Psychological and Behavioral Determinants

    Get PDF
    A rapid review of current evidence examining psychological issues regarding the use of antibiotics and antimicrobials and resistance to these in both human and animal populations was conducted. Specific areas of interest were studies examining psychological determinants of AMR and interventions which attempt to change behavior with regard to AMR in the general population; animals; and fish, in particular. Although there is some evidence of the effectiveness of behavior change in general human populations, there is limited evidence in farmed animals, with a particular dearth in fish farming. We conclude there is an urgent need for more psychological research to identify major barriers and facilitators to change and evaluate the effectiveness of theory-based interventions aimed at reducing AM use in food production animals, including the promotion of alternatives to AMs, such as vaccination

    Spatial facilitation by a high-performance dragonfly target-detecting neuron

    Get PDF
    Many animals visualize and track small moving targets at long distances—be they prey, approaching predators or conspecifics. Insects are an excellent model system for investigating the neural mechanisms that have evolved for this challenging task. Specialized small target motion detector (STMD) neurons in the optic lobes of the insect brain respond strongly even when the target size is below the resolution limit of the eye. Many STMDs also respond robustly to small targets against complex stationary or moving backgrounds. We hypothesized that this requires a complex mechanism to avoid breakthrough responses by background features, and yet to adequately amplify the weak signal of tiny targets. We compared responses of dragonfly STMD neurons to small targets that begin moving within the receptive field with responses to targets that approach the same location along longer trajectories. We find that responses along longer trajectories are strongly facilitated by a mechanism that builds up slowly over several hundred milliseconds. This allows the neurons to give sustained responses to continuous target motion, thus providing a possible explanation for their extraordinary sensitivity

    Synthesis of pentacene nanotubes by melt-assisted template wetting

    Get PDF
    peer-reviewedno abstract availablePUBLISHEDpeer-reviewe

    Effect of spatial sampling on pattern noise in insect-based motion detection

    Get PDF
    Insects perform highly complicated navigational tasks even though their visual system is relatively simple. The main idea of work in this area is to study the visual system of insects and to incorporate algorithms used by them in electronic circuits to produce low power, computationally simple, highly efficient, robust devices capable of accurate motion detection and velocity estimation. The Reichardt correlator model is one of the earliest and the most prominent biologically inspired models of motion detection developed by Hassentein and Reichardt in 1956. In an attempt to get accurate estimates of yaw velocity using an elaborated Reichardt correlator, we have investigated the effect of pattern noise (deviation of the correlator output resulting from the structure of the visual scene) on the correlator response. We have tested different sampling methods here and it is found that a circular sampled array of elementary motion detectors (EMDs) reduces pattern noise effectively compared to an array of rectangular or randomly selected EMDs for measuring rotational motion

    Temporal and spatial adaptation of transient responses to local features

    Get PDF
    Extent: 12p.Interpreting visual motion within the natural environment is a challenging task, particularly considering that natural scenes vary enormously in brightness, contrast and spatial structure. The performance of current models for the detection of self-generated optic flow depends critically on these very parameters, but despite this, animals manage to successfully navigate within a broad range of scenes. Within global scenes local areas with more salient features are common. Recent work has highlighted the influence that local, salient features have on the encoding of optic flow, but it has been difficult to quantify how local transient responses affect responses to subsequent features and thus contribute to the global neural response. To investigate this in more detail we used experimenter-designed stimuli and recorded intracellularly from motion-sensitive neurons. We limited the stimulus to a small vertically elongated strip, to investigate local and global neural responses to pairs of local “doublet” features that were designed to interact with each other in the temporal and spatial domain. We show that the passage of a high-contrast doublet feature produces a complex transient response from local motion detectors consistent with predictions of a simple computational model. In the neuron, the passage of a high-contrast feature induces a local reduction in responses to subsequent low-contrast features. However, this neural contrast gain reduction appears to be recruited only when features stretch vertically (i.e., orthogonal to the direction of motion) across at least several aligned neighboring ommatidia. Horizontal displacement of the components of elongated features abolishes the local adaptation effect. It is thus likely that features in natural scenes with vertically aligned edges, such as tree trunks, recruit the greatest amount of response suppression. This property could emphasize the local responses to such features vs. those in nearby texture within the scene.David C. O’Carroll, Paul D. Barnett and Karin Nordströ

    The impact of assuming the primary caregiver role following traumatic spinal cord injury: an interpretative phenomenological analysis of the spouse's experience.

    Get PDF
    This study aimed to explore the lived experience of assuming the primary caregiver role in a group of spouses of individuals living with a traumatic spinal cord injury (SCI) (injuries ranged from paraplegia to quadriplegia). Individual in-depth interviews were conducted with 11 participants who were both the spouse and primary caregiver of an individual with a SCI; of these, 10 were female and 1 was male. All interviews were transcribed verbatim and were subjected to interpretative phenomenological analysis (IPA). Here we present three inter-related master themes: 'The emotional impact of SCI'; 'Post-injury shift in relationship dynamics' and 'Impact of caregiving on identity'. Regarding the emotional impact of spinal injury, participants reported an almost instantaneous sense of loss, emptiness and grief during the injured person's rehabilitative period and feelings of anxiety were reported in anticipation of their return to the family home. A distinct change in role from spouse and lover to care provider was reported and this ultimately contributed to relationship change and a loss of former identity. The findings are discussed in relation to extant caregiver literature and recommendations for future caregiver support are highlighte
    corecore