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ABSTRACT

Insects perform highly complicated navigational tasks even though their visual system is relatively simple.
The main idea of work in this area is to study the visual system of insects and to incorporate algorithms used
by them in electronic circuits to produce low power, computationally simple, highly efficient, robust devices
capable of accurate motion detection and velocity estimation. The Reichardt correlator model is one of the
earliest and the most prominent biologically inspired models of motion detection developed by Hassentein and
Reichardt in 1956. In an attempt to get accurate estimates of yaw velocity using an elaborated Reichardt
correlator, we have investigated the effect of pattern noise (deviation of the correlator output resulting from
the structure of the visual scene) on the correlator response. We have tested different sampling methods here
and it is found that a circular sampled array of elementary motion detectors (EMDs) reduces pattern noise
effectively compared to an array of rectangular or randomly selected EMDs for measuring rotational motion.

Keywords: Reichardt correlator, pattern noise, spatial sampling, artificial insect vision.

1. INTRODUCTION

Models of the visual systems of insects, with their relative simplicity and efficiency, have become the building
blocks for improving the various techniques used in motion detection and velocity estimation. Of the various
models of motion detection based on insect vision, the earliest and the most prominent model is the Reichardt
correlator model which was developed by Hassenstein and Reichardt in 1956.1

The Reichardt correlation motion detector possess a highly parallel architecture. Each elementary motion
detector (EMD) detects motion in a preferred direction by comparing a signal from one receptor with a delayed
signal from an adjacent receptor. The comparison is performed using a nonlinear, multiplicative interaction
between the two channels. Two EMDs tuned to opposite directions are combined to form a bidirectional
motion detector.2

Most of the spatiotemporal energy models, the dominant models for motion detection in vertebrates, are
mathematically equivalent to correlator models.3 Correlator models have been applied to explain motion
detection in humans, birds and cats.4–6 Though insects and humans are capable of estimating image veloci-
ties,7, 8 the basic correlator model does not function as a velocity estimator. It reliably indicates directional
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motion of sinusoidal gratings, but the response depends on contrast (brightness) and spatial frequency (shape)
as well as velocity.9 Analysis and simulations suggest that the processes commonly found in visual systems,
such as pre-filtering, response compression, integration, and adaptation, improve the reliability of velocity
estimation and expand the range of velocities coded.10–16 Hence we have elaborated the basic Reichardt
model to mimic the properties of the insect visual system.2 We have not included motion adaptation in our
elaborated model here, in order to simplify the error analysis.

The errors considered here in this paper are due to ‘pattern noise’, the deviation in correlator output that
results from the structure of the visual scene. Physiological motion detectors also suffer from random noise,
which is due to the variation in its response on repeated presentation of identical stimulus patterns. The random
noise experienced by a biological motion detector falls into two categories, namely photon noise and intrinsic
noise. The photon noise results from variations in the number of photons absorbed by a photoreceptor in a
given unit of time. In addition, the neurons and synapses that comprise the correlator generate intrinsic noise.
Studies done on the LMCs (Lamina Monopolar Cells) by Laughlin11 indicates that photon noise dominates
intrinsic noise up to moderate light intensities and at higher light intensities, photon noise equals intrinsic
noise in magnitude.

Dror conducted studies on photon noise using Aiken’s images and found that while photon noise leads to a
slight increase in relative error, its contribution is small compared to that of pattern noise suggesting that the
performance of a velocity estimation system based on Reichardt correlators depends primarily on responses to
pattern noise.17

The accuracy in the estimation of the motion parameters depends largely on the field of view.18 When the
diameter of the receptive field is small, the nature of the field line pattern becomes unclear and there can be
no decision of whether a field is due to translation or due to rotation or a mixture of both.18 The tangential
neurons on the fly brain are sensitive to the typical optic flow patterns generated during self-motion. It was
found that a simplified linear model of these neurons which performs sampling from large receptive fields can
be used to estimate self-motion from optic flow.19

In this paper, we have experimented with different spatial sampling techniques in a correlation based
system to understand their effect on pattern noise. It was found that a circular array of EMDs reduces pattern
noise compared to a rectangular grid of EMDs or randomly selected EMDs for measuring rotational velocity,
indicating that the circular method of sampling the detectors may be optimal for creating yaw detectors.

2. VISUAL SYSTEM OF INSECTS

Flying insects depend mainly on retinal motion patterns to control and stabilise their course of motion. The
visual information obtained by the photoreceptors is conveyed by the receptor axons in the optic lobe, which
consists of successive visual neuropils namely lamina, medulla, lobula and lobula plate as shown in Figure 1.
Each visual neuropil is composed of retinotopically arranged columns and superimposed layers. Columns are
built up by parallel centripetal and centrifugal small field neurons. The centripetal output cells of the lobula
plate project into the brain and the centrifugal cells project from the brain into the lobula plate. Output
connections from the optic lobe to the brain are established by both columnar and tangential cells. Columnar
cells leave the lobula and the lobula plate as dense bundles and terminate in visual centres of the ventrolateral
brain termed optic foci. Tangential output neurons of the optic lobe originate from all the neuropils except
the lamina. Some of them connect both the optic lobes (heterolateral elements) and others project also into
the optic foci. The optic foci can be regarded as the major sensory integration areas for the motor control in
the brain.14 Apart from the optic lobes, they also receive information from the ocelli, and mechanosensory
inputs from the antenna and the halteres. The output elements of these are descending neurons, which pass
through the cervical connective and terminate in the motor neuropils of the thoracic ganglion.14

The main motion computation centre in the whole pathway is the lobula plate. The lobula plate receives
input from the columnar cells derived from the medulla and lobula. Typical output elements of the lobula plate
are two classes of giant neurons termed the horizontal system (HS) and vertical system (VS). The horizontal
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system consists of three elements, the dendritic arbours of which are located near the anterior surface of
the neuropil. According to these dendritic locations, the three cells are termed north, equatorial and south
horizontal cells (HSN, HSE and HSS). The three HS neurons (HSN, HSE and HSS) together occupy the whole
retinotopic area of the lobula plate. Each of them covers roughly one third of the dorsoventral extent of the
neuropil with some overlap. Correspondingly, their receptive field covers the dorsal, equatorial and ventral
areas of the ipsilateral visual hemisphere. The dendrites of the HS neurons arborize in the anterior layers of
the lobula plate.20 The vertical cells are a class of 11 output neurons (VS1-11), also occupying the whole
retinotopic area of the lobula plate. Their dendritic fields are more strip-like and oriented dorsoventrally. The
dendrites are stacked from distal to the proximal side of the lobula plate and overlap considerably.21, 22

Lamina

Local 

motion

Photoreceptors

Medulla

Lobula plate

Global 

motion

Array of EMDs 

postulated to be 

in the medulla
To the motor neurons

which control the steering 

muscles of the fly

HS neuron

Figure 1. The visual system of insects showing the early visual pathways projecting from the photoreceptors to the
visual neuropils namely the lamina, medulla, lobula and the lobula plate. The visual information is passed from the
photoreceptors to the lamina and motion is detected by the EMDs in the medulla. The various motion detecting
interneurons in the lobula plate (the lighter colored line in the figure shows the example of a HS neuron) passes on the
information through the optic foci to the brain which then sends the information through the descending interneurons
to the motor neurons, which control the steering muscles thereby enabling flight control in insects.

Optomotor yaw torque responses are selectively induced by horizontal motion23, 24 and hence must be
controlled by EMDs having sampling bases parallel to the horizontal axis of the eye lattice or by pairs of
EMDs having symmetrically arranged sampling bases with respect to the axis, the outputs of which are added
together. Monocular stimulation with progressive (front to back) motion leads to a simultaneous decrease of
the ipsilateral and an increase of the contralateral wing beat amplitude and thus to the generation of yaw torque
turning the animal in the same direction as the perceived motion. Regressive (back to front) motion is less
effective but leads to syndirectional torque responses. Horizontal motion activates two motion sensitive systems
behind each eye, which integrate the output of the arrays of the EMDs and that are specifically tuned to large
field motion (global motion) and small field motion or object motion (local motion). The large field system is
activated by ipsilateral front to back and contralateral back to front motion, and induces syndirectional yaw
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torque responses of the fly by simultaneous excitation and inhibition of the contralateral and ipsilateral flight
motor respectively. The small field system is activated by the ipsilateral horizontal motion of small objects in
both directions and induces turning towards the stimulus. The output channels of the small field and large
field systems contain different frequency filters. The small field and large field systems dominate in torque-
control under stimulation with high frequency and low frequency oscillatory motion respectively.25 Since
under natural conditions, the rotatory retinal motion patterns arise from self rotations of the animal in space,
HS system appears to act as a visual yaw-monitor, specifically designed for the control of course-stabilising
yaw torque generation by the motor system.14, 26

The motion sensitive cells of the lobula plate supply input to the flight control system. The visual system,
however, is not the only sensory modality that detects self-motion during flight. Mechanosensory fields at the
base of the of the beating halteres detect forces that result when the fly rotates in space.27 These gyroscopic
sensors are more effective in detecting high speed body rotations and mediate the reflexive changes in the wing
kinematics that stabilize the animal against mechanical perturbations during flight, while the slower rotations
or drift during flight is more easily detected by the visual system. Thus these two sensory modalities encode
different ranges of oscillation frequencies over which the animal operates. The halteres, like aerodynamically
active forewings, are equipped with their own set of steering muscles, which receives strong excitory input from
descending visual interneuron.28 Some haltere afferents form mono-synaptic electrical synapses with steering
muscle motor neurons. This control loop of visual feedback to haltere muscles, and haltere feedback to wing
muscles allows the visual system to initiate responses in wing steering muscles indirectly or to control the gain
of haltere mediated reflexes, thus enabling flight control in insects.29, 30

3. PRESENCE OF PATTERN NOISE

Differences in the structure of scenes result in variations in the correlator response termed as the pattern noise.
In order to clearly demonstrate this, physiological and modelling experiments were done at a high speed and
at a low speed by repeating the same stimulus at the same and different initial positions.

3.1. Electrophysiology methods
Males of the fly Eristalis tenax were captured in the wild and the membrane potential of wide-field motion
detecting neurons (HS cells) was recorded intracellularly using standard techniques.31

Stimuli were presented on a CRT display (Flatron 915 FT Plus, LG Electronics) at a frame rate of 200
Hz at 640 by 480 pixel resolution and mean luminance of 41 cd/m2. A conventional OpenGL graphics card
(geForce 3 Ti 200, nVidia) was used with Vision Egg stimulus generation software by author Andrew Straw
(www.visionegg.org). The stimuli used were the same digital panoramas used for the modeling experiments.
These panoramas were presented on the inside of a virtual cylinder, which was centered on the fly and per-
spective distorted according to the fly’s calibrated 3D position and orientation relative to the screen. Motion
simulated pure yaw rotations by spinning the virtual cylinder about the dorsal-ventral axis of the fly’s head.
The display subtended approximately 90 degrees horizontally from midline to the lateral portion of the animal,
thus stimulating most of the receptive field of HS neurons.20, 32

3.2. Electrophysiology results
By aligning responses in time across several initial stimulus positions, both pattern noise and intrinsic noise is
largely removed from the mean, but both contribute to the standard deviation (‘time aligned’ in Figure 2 and
3 ). When responses are aligned by stimulus position (‘phase aligned’), the mean is subject to pattern noise
while the standard deviation indicates only intrinsic noise. A comparison of the mean between time aligned
and phase aligned responses shows the presence of pattern noise on real HS cells in our experimental setup.
The larger standard deviation of the time aligned response compared to the phase aligned response indicates
that pattern noise greatly exceeds intrinsic noise in HS cells at 850 deg/sec. Unfortunately, our recording
durations were too short to perform the same phase alignment at 100 degrees per second, but inspection of
the individual responses indicates that pattern noise is less significant at this slower speed.
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Figure 2. This figure shows the effect of ‘pattern noise’ on response of a single fly wide-field motion detecting neuron
(HS cell) to image 1 (see Figure 6), with the image presented moving at 850 degrees per second at 8 different initial
phases, each 45 degrees apart. For each combination of velocity and image, part (a) shows three responses to identical
experimental conditions. Part (b) shows the mean of at least three responses at each of several stimulus positions. Part
(c) show the mean response in black and the standard deviation of the response around the mean in gray. The ‘time
aligned’ response shows the individual responses at each initial position averaged without compensating for position
change. For the 850 degree/second motion, responses were also ‘phase aligned’ by compensating for the position change
before averaging. To eliminate noisy high frequency signal components, signals were low pass filtered before averaging.

3.3. Modelling results

Figure 4 and Figure 5 shows the response of our elaborated EMD model2 designed with an EMD averaging
window, the same angular size as the computer screen used for the physiological experiment, and the simulation
is run at the same speed as done in the physiological experiment (850◦/sec and 100 degrees per second) using
the same eight phases. The results obtained at phase zero and at each different initial phase are shown and
it can be seen that it is similar to the physiological results clearly showing the pattern noise present. Since
intrinsic noise is totally absent in the model, the noise present is mainly caused by the pattern noise. Then
as carried out before, the resulting 8 curves are averaged in two ways, (i) time aligned and (ii) phase aligned.
The response of the model agrees well with the physiological results clearly demonstrating that the pattern
noise is indeed a major source of temporal response variation in real HS recordings. It is also seen from both
physiological and modelling results that pattern noise is present more significantly at higher speeds.
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Figure 3. This figure shows the effect of ‘pattern noise’ on response of a single fly wide-field motion detecting neuron
(HS cell) to image 1 (see Figure 6), with the image presented moving at 100 degrees per second at 8 different initial
phases, each 45 degrees apart. For each combination of velocity and image, part (a) shows three responses to identical
experimental conditions. Part (b) shows the mean of at least three responses at each of several stimulus positions. Part
(c) show the mean response in black and the standard deviation of the response around the mean in gray. The ‘time
aligned’ response shows the individual responses at each initial position averaged without compensating for position
change. Unfortunately, our recording durations were too short to perform the same phase alignment at 100 degrees per
second, but inspection of the individual responses indicates that pattern noise is less significant at this slower speed.
To eliminate noisy high frequency signal components, signals were low pass filtered before averaging.

4. SAMPLING OF THE EMDS

Our hypothesis is that the large strip-like nature of the HS cell receptive field, which is fully circular if
summation at the steering muscles is taken into account, plays a functional role in encoding velocity. Because
the circular array of EMDs is parallel to the preferred direction of motion, a purely circular optical flow
pattern (i.e. yaw for an HS neuron) would produce the same temporal sequence of stimulation of individual
photoreceptors. Hence if a high contrast feature is present within the receptive field at one point in time, it
will also be present at future times. By summing across such an array, pattern noise is largely reduced.

In order to test this hypothesis, we ran simulations with a panoramic yaw stimulus with a fixed velocity,
for 2 seconds. We ran the test for 4 different panoramic images (these images are shown in Figure 6) and 12
different speeds for each. We then sampled the matrix of EMD outputs in one of 4 ways.

The four ways in which we have sampled the output of the EMDs are

1) the output of all the EMDs are used which we call as total, as we have used all our EMDs here, 2)
the output of a randomly selected rectangular array of 15 × 16 EMDs are taken in this case, 3) the output
of randomly selected 240 EMDs from the total sample of EMDs are used, 4) And finally the response of a
randomly selected circular row of 240 EMDs is taken.

Each case is clearly explained in the subsections below.

4.1. Total sample of all EMDs

The first (labelled ‘total’ in the figures below) is the sum (across the time dimension) of all EMDs. Here we
have sampled the outputs of the all EMDs (240 × 37 EMDs). In this method, the outputs of all the EMDs
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Figure 4. This figure shows the simulation results obtained by running the model at 850 degrees per sec using the same
image, at 8 different initial phases, each 45 degrees apart, as done in the physiological experiment shown in Figure 2.
Part (a) of the graph shows the response at phase zero. Part (b) shows the response to each of the 8 configurations. Part
(c) shows the response averaged in the time aligned way. In the time aligned method, the normal average of the each
of the eight response removes the pattern noise as the response is aligned by stimulus time. The results obtained agree
with the physiological data, demonstrating that pattern noise acts as a major source of temporal response variation in
HS recording

are averaged over time where as in the forthcoming sections only selected EMDs are used from the total array
and the effect of each of these sampling techniques on the pattern noise is noted by calculating the relative
error which is clearly explained in the next section.

4.2. Square lattice

A randomly selected rectangular grid of 15× 16 EMDs (i.e 240 total) as shown in Figure 8 is used here. Since
sampling of a square array of detectors gives a similar response, it can even be called a square lattice as is
referred to in this paper.
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Figure 5. This figure shows the simulation results obtained by running the model at 100 degrees per sec using the same
image, at 8 different initial phases, each 45 degrees apart, as done in the physiological experiment shown in Figure 3.
Part (a) of the graph shows the response at phase zero. Part (b) shows the response to each of the 8 configurations.
Part (c) shows the response averaged in two ways, time aligned and phase aligned. In the time aligned method, the
normal average of the each of the eight response removes the pattern noise as the response is aligned by stimulus time.
In the phase aligned method, we align each phase delayed response by shifting each response along the x-axis with
the data obtained for phase zero and then we average it. Now the pattern noise is still present because in this way,
it is the image position that is averaged rather than time, and we can still see the noise as the noise is locked in the
stimulus position. The results obtained agree with the physiological data, demonstrating that pattern noise acts as a
major source of temporal response variation in HS recordings

4.3. Randomly sampled array

In this method, the sample consisted of 240 EMDs selected randomly from the 240 × 37 array as shown in
Figure 9.
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Image 1

Image 2

Image 3

Image 4

Figure 6. The panoramic images given as stimuli to our model. A panorama of the image is formed by ‘warping’ 12
image tiles at 30◦ intervals to remove lens distortions and then by wrapping its ends together using Apple Quicktime
VR software on a Macintosh computer.

Figure 7. This diagram shows the total array of EMDs (240 × 37) from which the output of motion detection is
logged. The inter-ommatidial angle of 1.5 degrees, which separates each EMD is not shown in this figure. Each box
here represents an EMD.

4.4. Circular sampled array

Finally we used a circular linear array with just 240 EMDs, representing one of the 37 possible rows of EMDs,
selected at random, as shown in Figure 10.

5. SAMPLING RESULTS

The error measure used here called the relative error defined by Dror as, Erel = Eabs/R, where the absolute
error (Eabs) is the difference between the actual response and the expected response.17 The expected response
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Figure 8. This diagram shows a sample of randomly selected rectangular array of EMDs from which the output of the
motion detection is noted. The inter-ommatidial angle of 1.5 degrees, which separates each EMD is not shown in this
figure. Each box here represents an EMD and the shaded box represents the EMDs selected from the total array.

Figure 9. This diagram shows a sample of randomly selected EMDs from the total array of 240 × 37 EMDs. The
inter-ommatidial angle of 1.5 degrees, which separates each EMD is not shown in this figure. Each box here represents
an EMD and the shaded box represents the EMDs selected for correlation.

Figure 10. This diagram shows a sample of a randomly selected row of 240 EMDs from which the output of the motion
detection is noted. The inter-ommatidial angle of 1.5 degrees, which separates each EMD is not shown in this figure.
Each box here represents an EMD and the shaded box represents the EMDs selected for correlation.

is the mean response value that is given by R. For a given set of images, moving at a given velocity, the mean
response R is calculated by averaging the response of the wide field correlator at all points in the selected
sampled space and sampled time. The relative error for the same set of responses is found by dividing their
standard deviation by the mean.

The mean relative error is then calculated for each case (square, circular, random and total) by finding
the average relative error for about 20 iterations on all the four images at 12 different speeds and is plotted
as shown in Figure 13. It is seen that the relative error of the circular sample of EMDs is less than that of
the random sample and the rectangular detector arrays and is much closer to the relative error of the total
EMD array. This result suggests that motion detection and velocity estimation at yaw velocity can be done
effectively using just a circular array of 240 EMDs.

The error bars in the Figure 11 and the mean correlator response for each case, as shown in Figure 12 also
indicate that the circular sample of EMDs reduces errors and pattern noise more than the randomly sampled
array and rectangular or square grid of EMDs.
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Figure 11. (a) Responses and relative error obtained from the simulation of a rectangular array (16× 15) array of 240
EMDs. As can be seen the errors in this case indicate that there is more pattern noise when the sampling is done with
a rectangular array of EMDs. (b) The error bars are obtained from the simulation of 240 EMDs selected randomly
from the total array of 240 × 37 EMDs. Because of the random selection of the EMDs, we can see some error with
this kind of sampling. (c) The error bars are obtained from the simulation of a circular array of 240 EMDs. It is seen
that the error in this case is reduced and is similar to using the whole total array of 240× 37 EMDs indicating effective
encoding of velocity can be done using even a small number of a circular detectors. (d) The error bars obtained from
the simulation of total array of 240 × 37 EMDs. In all four of the above curves, the correlator outputs are given in
arbitrary units.
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Figure 12. The mean correlator simulated response for the square, circular, random and total array of EMDs for
image 1 moving at a constant velocity of 500 degrees per second is shown here. It is seen that the sampling of circular
detector array gives a stable output similar to the total sample of EMDs.

6. ROLE OF NATURAL IMAGE STATISTICS

We use natural images as stimuli for our experiments. Natural images are far from random and show a large
degree of structure. This structure can be described by the statistics of the image source, and can be consid-
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Figure 13. The relative errors obtained from the simulation of the square, random, circular and total array of the
EMDs. The relative error defined by Dror as, Erel = Eabs/R, where the absolute error (Eabs) is the difference between
the actual response and the expected response.17 The mean relative error is calculated by averaging the relative error
obtained for about 20 iterations on all the four images at 12 different speeds. It is clearly seen that the mean relative
error for the circular linear array of EMDs is much lower and is closer to that of the total array of detectors.

ered as prior knowledge. Therefore a certain amount of image data is predictable and thus redundant.33, 34

The visual system appears to be optimized to take advantage of the statistical properties of natural images
using specific optimization criteria of redundancy minimization, maximisation of information transmission,
sparseness of the neural coding and minimising reconstruction error, demonstrating that simple optimisation
principles combined with knowledge of image statistics can predict visual processing strategies which are found
in nature .35 Recent development in statistical modelling, along with powerful computational tools, have en-
abled researchers to study more sophisticated statistical models for visual images and to use them to test
the efficient coding hypothesis for both individual neurons and populations of neurons.36–38 The results of
various studies done on the statistics of natural images all draw the same conclusion that the power spectrum
of natural images tends to depend on the spatial frequency f in the form of 1

f2 .

Measured power spectra are one of the most prominent sources of natural image statistics, which are
obtained by computing the Fourier transform of an image and multiplying each element of the transform
by its complex conjugate. Averaging over horizontal and vertical orientations gives power as a function of
frequency. The power spectra of natural images are generally similar. The 1

f2 property of natural images is
generally not obtained for random images (such as for example, unbiased random noise images, which produce
a flat power spectrum). The 1

f2 spectral slope of natural images implies that natural images are statistically
scale-free.39 That is, images viewed through different angular scales (through lenses of different focal lengths)
have similar statistics.33–35, 40, 41

Studies carried out by Dror reveal that similarities between natural image power spectra lead to predictable
peak response velocities and to similarities in the shapes of the velocity response curves for different natural
images. The primary difference between the curves, their overall amplitude, results from contrast differences
between images. In order to use mean correlator response as a reliable indicator of velocity, the visual system
needs to compensate for these contrast variations.17, 40 One possibility is contrast saturation early in the
motion detection pathway, which eliminates significant differences in contrast17 and alternatively some form
of adaptation (contrast adaptation) in the visual system, may work to remove contrast difference between the
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images.16, 42 In this paper, we have not included the effects of saturation and adaptation, in order to simplify
the model. Future work in this area could be to investigate the effect of these elaborations on pattern noise
during simulation of natural images.

7. CONCLUSION

In this paper, we have conducted a study on pattern noise using physiological recordings together with mod-
elling results and we performed quantitative analysis of the effects of receptive field shape on pattern noise,
measured as ‘relative error’. This error is defined as the residual variance over time in the response due to the
local structure of the image, divided by the mean (DC level) of that response. The assumption here is that
the DC level of the summed outputs of an EMD (elementary motion detector) array represents the desired
velocity signal, while time-variation due to the pattern structure is noise, so that the relative error is effectively
a measure of signal-to-noise ratio in the context of the task of velocity coding. It is found that the circular
receptive field shape reduces pattern noise compared to an array of rectangular or randomly selected EMDs.

It can also be seen that the circular linear array achieves a very similar variance in velocity estimation to
that of the ‘full’ EMD set, and (depending on speed) 10 or more times lower than the other two strategies
for sampling EMDs. We conclude that a circular, linear detector array may be the optimal way to sample
outputs from EMDs of the correlator type, at least with respect to reduction of pattern noise when estimating
yaw velocity. Taken together with the underlying physiological experiments that are being carried out in our
lab, this suggests that a small detector array with as few as 240 pixels could provide robust estimates of speed
under natural image conditions. Further, it would be interesting to pursue similar tests on more complex optic
flow.
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