Effect of spatial sampling on pattern noise in insect-based motion detection

Abstract

Insects perform highly complicated navigational tasks even though their visual system is relatively simple. The main idea of work in this area is to study the visual system of insects and to incorporate algorithms used by them in electronic circuits to produce low power, computationally simple, highly efficient, robust devices capable of accurate motion detection and velocity estimation. The Reichardt correlator model is one of the earliest and the most prominent biologically inspired models of motion detection developed by Hassentein and Reichardt in 1956. In an attempt to get accurate estimates of yaw velocity using an elaborated Reichardt correlator, we have investigated the effect of pattern noise (deviation of the correlator output resulting from the structure of the visual scene) on the correlator response. We have tested different sampling methods here and it is found that a circular sampled array of elementary motion detectors (EMDs) reduces pattern noise effectively compared to an array of rectangular or randomly selected EMDs for measuring rotational motion

    Similar works