232 research outputs found

    Светоизлучающие диоды белого света: состояние и основные тенденции развития

    Get PDF
    Проведен обзор состояния и тенденций развития технологии изготовления светоизлучающих диодов белого света. Систематизированы параметры сверхъярких белых светодиодов, светодиодных модулей и источников света

    Bone Marrow Osteoblastic Niche: A New Model to Study Physiological Regulation of Megakaryopoiesis

    Get PDF
    BACKGROUND: The mechanism by which megakaryocytes (Mks) proliferate, differentiate, and release platelets into circulation are not well understood. Growing evidence indicates that a complex regulatory mechanism, involving cellular interactions, composition of the extracellular matrix and physical parameters such as oxygen tension, may contribute to the quiescent or permissive microenvironment related to Mk differentiation and maturation within the bone marrow. METHODOLOGY/PRINCIPAL FINDINGS: Differentiating human mesenchymal stem cells (hMSCs) into osteoblasts (hOSTs), we established an in vitro model for the osteoblastic niche. We demonstrated for the first time that the combination of HSCs, Mks and hypoxia sustain and promote bone formation by increasing type I collagen release from hOSTs and enhancing its fibrillar organization, as revealed by second harmonic generation microscopy. Through co-culture, we demonstrated that direct cell-cell contact modulates Mk maturation and differentiation. In particular we showed that low oxygen tension and direct interaction of hematopoietic stem cells (HSCs) with hOSTs inhibits Mk maturation and proplatelet formation (PPF). This regulatory mechanism was dependent on the fibrillar structure of type I collagen released by hOSTs and on the resulting engagement of the alpha2beta1 integrin. In contrast, normoxic conditions and the direct interaction of HSCs with undifferentiated hMSCs promoted Mk maturation and PPF, through a mechanism involving the VCAM-1 pathway. CONCLUSIONS/SIGNIFICANCE: By combining cellular, physical and biochemical parameters, we mimicked an in vitro model of the osteoblastic niche that provides a physiological quiescent microenvironment where Mk differentiation and PPF are prevented. These findings serve as an important step in developing suitable in vitro systems to use for the study and manipulation of Mk differentiation and maturation in both normal and diseased states

    Towards a fullerene-based quantum computer

    Full text link
    Molecular structures appear to be natural candidates for a quantum technology: individual atoms can support quantum superpositions for long periods, and such atoms can in principle be embedded in a permanent molecular scaffolding to form an array. This would be true nanotechnology, with dimensions of order of a nanometre. However, the challenges of realising such a vision are immense. One must identify a suitable elementary unit and demonstrate its merits for qubit storage and manipulation, including input / output. These units must then be formed into large arrays corresponding to an functional quantum architecture, including a mechanism for gate operations. Here we report our efforts, both experimental and theoretical, to create such a technology based on endohedral fullerenes or 'buckyballs'. We describe our successes with respect to these criteria, along with the obstacles we are currently facing and the questions that remain to be addressed.Comment: 20 pages, 13 figs, single column forma

    Low Efficiency of Homology-Facilitated Illegitimate Recombination during Conjugation in Escherichia coli

    Get PDF
    Homology-facilitated illegitimate recombination has been described in three naturally competent bacterial species. It permits integration of small linear DNA molecules into the chromosome by homologous recombination at one end of the linear DNA substrate, and illegitimate recombination at the other end. We report that homology-facilitated illegitimate recombination also occurs in Escherichia coli during conjugation with small non-replicative plasmids, but at a low frequency of 3×10−10 per recipient cell. The fate of linear DNA in E. coli is either RecBCD-dependent degradation, or circularisation by ligation, and integration into the chromosome by single crossing-over. We also report that the observed single crossing-overs are recA-dependent, but essentially recBCD, and recFOR independent. This suggests that other, still unknown, proteins may act as mediator for the loading of RecA on DNA during single crossing-over recombination in E. coli

    On the conveyance of angular momentum in electronic energy transfer

    Get PDF
    When electronic excitation transfer occurs, it is of considerable interest to establish whether angular momentum can also be conveyed in the process. The question is prompted by a consideration that when the participating chromophores are atoms, ions, or molecular systems having high local symmetry, the electronic excited states that are involved are generally characterized not only by energy, but by angular momentum properties. Moreover, it is known that electron spin can be communicated between quantum dot exciton states. Resolving the general issue entails an electrodynamic representation exploiting irreducible tensor methods, the analysis being illustrated by application to energy transfer associated with a variety of multipolar transitions. The results exhibit novel connections between an angular momentum content of the electromagnetic coupling and a strongly varying distance dependence. It is concluded that the communication of angular momentum does not in general map unambiguously between a donor and energy acceptor

    High orders of perturbation theory: are renormalons significant?

    Full text link
    According to Lipatov, the high orders of perturbation theory are determined by saddle-point configurations (instantons) of the corresponding functional integrals. According to t'Hooft, some individual large diagrams, renormalons, are also significant and they are not contained in the Lipatov contribution. The history of the conception of renormalons is presented, and the arguments in favor of and against their significance are discussed. The analytic properties of the Borel transforms of functional integrals, Green functions, vertex parts, and scaling functions are investigated in the case of \phi^4 theory. Their analyticity in a complex plane with a cut from the first instanton singularity to infinity (the Le Guillou - Zinn-Justin hypothesis) is proved. It rules out the existence of the renormalon singularities pointed out by t'Hooft and demonstrates the nonconstructiveness of the conception of renormalons as a whole. The results can be interpreted as an indication of the internal consistency of \phi^4 theory.Comment: 28 pages, 8 figures include

    ADULT T-CELL LEUKAEMIA-LYMPHOMA WITH UNUSUAL PHENOTYPE

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23771/1/0000007.pd

    Bilocal expansion of the Borel amplitude and the hadronic tau decay width

    Full text link
    The singular part of Borel transform of a QCD amplitude near the infrared renormalon can be expanded in terms of higher order Wilson coefficients of the operators associated with the renormalon. In this paper we observe that this expansion gives nontrivial constraints on the Borel amplitude that can be used to improve the accuracy of the ordinary perturbative expansion of the Borel amplitude. In particular, we consider the Borel transform of the Adler function and its expansion around the first infrared renormalon due to the gluon condensate. Using the next-to-leading order Wilson coefficient of the gluon condensate operator, we obtain an exact constraint on the Borel amplitude at the first IR renormalon. We then extrapolate, using judiciously chosen conformal transformations and Pade approximants, the ordinary perturbative expansion of the Borel amplitude in such a way that this constraint is satisfied. This procedure allows us to predict the O(αs4)O(\alpha_s^4) coefficient of the Adler function, which gives a result consistent with the estimate by Kataev and Starshenko using a completely different method. We then apply this improved Borel amplitude to the tau decay width, and obtain the strong coupling constant αs(MZ)=0.1193±0.0007exp.±0.0010EW+CKM±0.0009meth.±0.0003evol.\alpha_s(M_Z) =0.1193 \pm 0.0007_{exp.} \pm 0.0010_{EW+CKM} \pm 0.0009_{meth.} \pm 0.0003_{evol.}. We then compare this result with those of other resummation methods.Comment: 30 pages, 4 eps-figures, revtex; version as appears in PRD; no major changes; more careful rounding of some number

    The use of composite pulses for improving DEER signal at 94 GHz

    Get PDF
    C.L.M. acknowledges funding from EPSRC as part of the iMRCDT. The W-band instrument was developed under the U.K. Research Councils Basic Technology Program (grant EP/F039034/1). S.V.D. acknowledges the Research Foundation Flanders (FWO) for financial support (grant G.0687.13). J.E.L. thanks the Royal Society for a University Research Fellowship. Sylvia Dewilde (Biomedical Sciences, University of Antwerp) is thanked for the purification of the Cys46Ser/ Cys55Ser mutant of human neuroglobin (NGB) used in this work. Adelheid Godt’s group is thanked for the synthesis of MSA236. We also thank the Wellcome Trust (grant 099149/Z/12/Z). The research data (and/or materials) supporting this publication can be accessed at http://dx.doi.org/10.17630/b65d05e6-6efa-48b9-a741-5a6322159a4a.The sensitivity of pulsed electron paramagnetic resonance (EPR) measurements on broad-line paramagnetic centers is often limited by the available excitation bandwidth. One way to increase excitation bandwidth is through the use of chirp or composite pulses. However, performance can be limited by cavity or detection bandwidth, which in commercial systems is typically 100-200 MHz. Here we demonstrate in a 94 GHz spectrometer, with > 800 MHz system bandwidth, an increase in signal and modulation depth in a 4-pulse DEER experiment through use of composite rather than rectangular π pulses. We show that this leads to an increase in sensitivity by a factor of 3, in line with theoretical predictions, although gains are more limited in nitroxide-nitroxide DEER measurements.PostprintPeer reviewe

    Development of silk-based scaffolds for tissue engineering of bone from human adipose derived stem cells

    Get PDF
    Silk fibroin is a potent alternative to other biodegradable biopolymers for bone tissue engineering (TE), because of its tunable architecture and mechanical properties, and its demonstrated ability to support bone formation both in vitro and in vivo. In this study, we investigated a range of silk scaffolds for bone TE using human adipose-derived stem cells (hASCs), an attractive cell source for engineering autologous bone grafts. Our goal was to understand the effects of scaffold architecture and biomechanics and use this information to optimize silk scaffolds for bone TE applications. Silk scaffolds were fabricated using differ- ent solvents (aqueous vs. hexafluoro-2-propanol (HFIP)), pore sizes (250–500 um vs. 500–1000 um) and structures (lamellar vs. spherical pores). Four types of silk scaffolds combining the properties of interest were systematically compared with respect to bone tissue outcomes, with decellularized trabecular bone (DCB) included as a ‘‘gold standard’’. The scaffolds were seeded with hASCs and cultured for 7 weeks in osteogenic medium. Bone formation was evaluated by cell proliferation and differentiation, matrix production, calcification and mechanical properties. We observed that 400–600 um porous HFIP-derived silk fibroin scaffold demonstrated the best bone tissue formation outcomes, as evidenced by increased bone protein production (osteopontin, collagen type I, bone sialoprotein), enhanced calcium deposition and total bone volume. On a direct comparison basis, alkaline phosphatase activity (AP) at week 2 and new calcium deposition at week 7 were comparable to the cells cultured in DCB. Yet, among the aqueous- based structures, the lamellar architecture induced increased AP activity and demonstrated higher equi- librium modulus than the spherical-pore scaffolds. Based on the collected data, we propose a conceptual model describing the effects of silk scaffold design on bone tissue formation.FCT: SFRH/BD/42316/2007NIH: DE161525 and EB0252
    corecore