132 research outputs found
A Software Architecture for Semiautonomous Robot Control
A software architecture has been developed to increase the safety and effectiveness with which tasks are performed by robots that are capable of functioning autonomously but sometimes are operated under control by humans. The control system of such a robot designed according to a prior software architecture has no way of taking account of how the environment has changed or what parts of a task were performed during an interval of control by a human, so that errors can occur (and, hence, safety and effectiveness jeopardized) when the human relinquishes control. The present architecture incorporates the control, task-planning, and sensor-based-monitoring features of typical prior autonomous-robot software architectures, plus features for updating information on the environment and planning of tasks during control by a human operator in order to enable the robot to track the actions taken by the operator and to be ready to resume autonomous operation with minimal error. The present architecture also provides a user interface that presents, to the operator, a variety of information on the internal state of the robot and the status of the task
Perception for mobile robot navigation: A survey of the state of the art
In order for mobile robots to navigate safely in unmapped and dynamic environments they must perceive their environment and decide on actions based on those perceptions. There are many different sensing modalities that can be used for mobile robot perception; the two most popular are ultrasonic sonar sensors and vision sensors. This paper examines the state-of-the-art in sensory-based mobile robot navigation. The first issue in mobile robot navigation is safety. This paper summarizes several competing sonar-based obstacle avoidance techniques and compares them. Another issue in mobile robot navigation is determining the robot's position and orientation (sometimes called the robot's pose) in the environment. This paper examines several different classes of vision-based approaches to pose determination. One class of approaches uses detailed, a prior models of the robot's environment. Another class of approaches triangulates using fixed, artificial landmarks. A third class of approaches builds maps using natural landmarks. Example implementations from each of these three classes are described and compared. Finally, the paper presents a completely implemented mobile robot system that integrates sonar-based obstacle avoidance with vision-based pose determination to perform a simple task
Prototypes, Location, and Associative Networks (PLAN): Towards a Unified Theory of Cognitive Mapping
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98111/1/s15516709cog1901_1.pd
System and Method for Executing Operations Specified in a Procedure Language
A system for executing a procedure includes a procedure execution engine. The procedure execution engine is configured to translate a procedure defined via a procedure language to natural language statements corresponding to the operations specified by the procedure language. The procedure execution engine is also configured to generate a user interface for controlling execution of the procedure, and to display the natural language statements via the user interface. The procedure execution engine is further configured to indicate progress of execution of the procedure, via the user interface, based on the displayed natural language statements
Working and Learning with Knowledge in the Lobes of a Humanoid's Mind
Humanoid class robots must have sufficient dexterity to assist people and work in an environment designed for human comfort and productivity. This dexterity, in particular the ability to use tools, requires a cognitive understanding of self and the world that exceeds contemporary robotics. Our hypothesis is that the sense-think-act paradigm that has proven so successful for autonomous robots is missing one or more key elements that will be needed for humanoids to meet their full potential as autonomous human assistants. This key ingredient is knowledge. The presented work includes experiments conducted on the Robonaut system, a NASA and the Defense Advanced research Projects Agency (DARPA) joint project, and includes collaborative efforts with a DARPA Mobile Autonomous Robot Software technical program team of researchers at NASA, MIT, USC, NRL, UMass and Vanderbilt. The paper reports on results in the areas of human-robot interaction (human tracking, gesture recognition, natural language, supervised control), perception (stereo vision, object identification, object pose estimation), autonomous grasping (tactile sensing, grasp reflex, grasp stability) and learning (human instruction, task level sequences, and sensorimotor association)
Formation of Kuiper Belt Binaries by Gravitational Collapse
A large fraction of 100-km-class low-inclination objects in the classical
Kuiper Belt (KB) are binaries with comparable mass and wide separation of
components. A favored model for their formation was capture during the
coagulation growth of bodies in the early KB. Instead, recent studies suggested
that large objects can rapidly form in the protoplanetary disks when swarms of
locally concentrated solids collapse under their own gravity. Here we examine
the possibility that KB binaries formed during gravitational collapse when the
excess of angular momentum prevented the agglomeration of available mass into a
solitary object. We find that this new mechanism provides a robust path toward
the formation of KB binaries with observed properties, and can explain wide
systems such as 2001 QW322 and multiples such as (47171) 1999 TC36. Notably,
the gravitational collapse is capable of producing 100% binary fraction for a
wide range of the swarm's initial angular momentum values. The binary
components have similar masses (80% have the secondary-over-primary radius
ratio >0.7) and their separation ranges from ~1,000 to ~100,000 km. The binary
orbits have eccentricities from e=0 to ~1, with the majority having e<0.6. The
binary orbit inclinations with respect to the initial angular momentum of the
swarm range from i=0 to ~90 deg, with most cases having i<50 deg. Our binary
formation mechanism implies that the primary and secondary components in each
binary pair should have identical bulk composition, which is consistent with
the current photometric data. We discuss the applicability of our results to
the Pluto-Charon, Orcus-Vanth, (617) Patroclus-Menoetius and (90) Antiope
binary systems.Comment: Astronomical Journal, in pres
Planet formation in Alpha Centauri A revisited: not so accretion-friendly after all
We numerically explore planet formation around alpha Cen A by focusing on the
crucial planetesimals-to-embryos phase. Our code computes the relative velocity
distribution, and thus the accretion vs. fragmentation trend, of planetesimal
populations having any given size distribution. This is a critical aspect of
planet formation in binaries since the pericenter alignment of planetesimal
orbits due to the gravitational perturbations of the companion star and to gas
friction strongly depends on size. We find that, for the nominal case of a MMSN
gas disc, the region beyond 0.5AU from the primary is hostile to planetesimal
accretion. In this area, impact velocities between different-size bodies are
increased, by the differential orbital phasing, to values too high to allow
mutual accretion. For any realistic size distribution for the planetesimal
population, this accretion-inhibiting effect is the dominant collision outcome
and the accretion process is halted. Results are robust with respect to the
profile and density of the gas disc: except for an unrealistic almost gas-free
case, the inner accretion safe area never extends beyond 0.75AU. We conclude
that planet formation is very difficult in the terrestrial region around alpha
Cen A, unless it started from fast-formed very large (>30km) planetesimals.
Notwithstanding these unlikely initial conditions, the only possible
explanation for the presence of planets around 1 AU from the star would be the
hypothetical outward migration of planets formed closer to the star or a
different orbital configuration in the binary's early history. Our conclusions
differ from those of several studies focusing on the later embryos-to-planets
stage, confirming that the planetesimals-to-embryos phase is more affected by
binary perturbations.Comment: accepted for publication in MNRAS (Note: abstract truncated. Full
abstract in the pdf file
Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity
We analyze combinatorial structures which play a central role in determining
spectral properties of the volume operator in loop quantum gravity (LQG). These
structures encode geometrical information of the embedding of arbitrary valence
vertices of a graph in 3-dimensional Riemannian space, and can be represented
by sign strings containing relative orientations of embedded edges. We
demonstrate that these signature factors are a special representation of the
general mathematical concept of an oriented matroid. Moreover, we show that
oriented matroids can also be used to describe the topology (connectedness) of
directed graphs. Hence the mathematical methods developed for oriented matroids
can be applied to the difficult combinatorics of embedded graphs underlying the
construction of LQG. As a first application we revisit the analysis of [4-5],
and find that enumeration of all possible sign configurations used there is
equivalent to enumerating all realizable oriented matroids of rank 3, and thus
can be greatly simplified. We find that for 7-valent vertices having no
coplanar triples of edge tangents, the smallest non-zero eigenvalue of the
volume spectrum does not grow as one increases the maximum spin \jmax at the
vertex, for any orientation of the edge tangents. This indicates that, in
contrast to the area operator, considering large \jmax does not necessarily
imply large volume eigenvalues. In addition we give an outlook to possible
starting points for rewriting the combinatorics of LQG in terms of oriented
matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos
corrected, presentation slightly extende
Planetary Dynamics and Habitable Planet Formation In Binary Star Systems
Whether binaries can harbor potentially habitable planets depends on several
factors including the physical properties and the orbital characteristics of
the binary system. While the former determines the location of the habitable
zone (HZ), the latter affects the dynamics of the material from which
terrestrial planets are formed (i.e., planetesimals and planetary embryos), and
drives the final architecture of the planets assembly. In order for a habitable
planet to form in a binary star system, these two factors have to work in
harmony. That is, the orbital dynamics of the two stars and their interactions
with the planet-forming material have to allow terrestrial planet formation in
the habitable zone, and ensure that the orbit of a potentially habitable planet
will be stable for long times. We have organized this chapter with the same
order in mind. We begin by presenting a general discussion on the motion of
planets in binary stars and their stability. We then discuss the stability of
terrestrial planets, and the formation of potentially habitable planets in a
binary-planetary system.Comment: 56 pages, 29 figures, chapter to appear in the book: Planets in
Binary Star Systems (Ed. N. Haghighipour, Springer publishing company
- …