63 research outputs found

    The Effect of Tropical Temperatures on the Quality of RNA Extracted from Stabilized Whole-Blood Samples

    Get PDF
    Whole-blood-derived transcriptional profiling is widely used in biomarker discovery, immunological research, and therapeutic development. Traditional molecular and high-throughput transcriptomic platforms, including molecular assays with quantitative PCR (qPCR) and RNAsequencing (RNA-seq), are dependent upon high-quality and intact RNA. However, collecting high-quality RNA from field studies in remote tropical locations can be challenging due to resource restrictions and logistics of post-collection processing. The current study tested the relative performance of the two most widely used whole-blood RNA collection systems, PAXgene® and Tempus™, in optimal laboratory conditions as well as suboptimal conditions in tropical field sites, including the effects of extended storage times and high storage temperatures. We found that Tempus™ tubes maintained a slightly higher RNA quantity and integrity relative to PAXgene® tubes at suboptimal tropical conditions. Both PAXgene® and Tempus™ tubes gave similar RNA purity (A260/A280). Additionally, Tempus™ tubes preferentially maintained the stability of mRNA transcripts for two reference genes tested, Succinate dehydrogenase complex, subunit A (SDHA) and TATA-box-binding protein (TBP), even when RNA quality decreased with storage length and temperature. Both tube types preserved the rRNA transcript 18S ribosomal RNA (18S) equally. Our results suggest that Tempus™ blood RNA collection tubes are preferable to PAXgene® for whole-blood collection in suboptimal tropical conditions for RNA-based studies in resource-limited settings

    In search of innovative capabilities of communities of practice : a systematic review and typology for future research

    Get PDF
    The concept of communities of practice has generated considerable debate among scholars of management. Attention has shifted from a concern with the transmission and reproduction of knowledge towards their utility for enhancing innovative potential. Questions of governance, power, collaboration and control have all entered the debate with different theorizations emerging from a wide mix of empirical research. We appraise these key findings through a critical review of the literature. From a divergent range of findings, we identify four main ways in which communities of practice enable and constrain innovative capabilities as (a) enablers of learning for innovation, (b) situated platforms for professional occupations, (c) dispersed collaborative environments and (d) governance structures designed for purpose. Our conclusion signals the way forward for further research that could be used to improve our understanding of different contextual forms and how they may align with organizations in enabling rather than constraining innovative capabilities

    Functional comparison of blood-stage Plasmodium falciparum malaria vaccine candidate antigens

    Get PDF
    The malaria genome encodes over 5,000 proteins and many of these have also been proposed to be potential vaccine candidates, although few of these have been tested clinically. RH5 is one of the leading blood-stage Plasmodium falciparum malaria vaccine antigens and Phase I/II clinical trials of vaccines containing this antigen are currently underway. Its likely mechanism of action is to elicit antibodies that can neutralize merozoites by blocking their invasion of red blood cells (RBC). However, many other antigens could also elicit neutralizing antibodies against the merozoite, and most of these have never been compared directly to RH5. The objective of this study was to compare a range of blood-stage antigens to RH5, to identify any antigens that outperform or synergize with anti-RH5 antibodies. We selected 55 gene products, covering 15 candidate antigens that have been described in the literature and 40 genes selected on the basis of bioinformatics functional prediction. We were able to make 20 protein-in-adjuvant vaccines from the original selection. Of these, S-antigen and CyRPA robustly elicited antibodies with neutralizing properties. Anti-CyRPA IgG generally showed additive GIA with anti-RH5 IgG, although high levels of anti-CyRPA-specific rabbit polyclonal IgG were required to achieve 50% GIA. Our data suggest that further vaccine antigen screening efforts are required to identify a second merozoite target with similar antibody-susceptibility to RH5

    Development of an improved blood-stage malaria vaccine targeting the essential RH5-CyRPA-RIPR invasion complex

    Get PDF
    Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric “RCR-complex”. We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called “R78C”, combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial

    HYDROLOGICAL STUDIES OF CHANNEL MODIFICATIONS AT CAUVERY RIVER, INDIA.

    Get PDF
    研究概要:The study deals with hydrological aspects of palaeo-courses of Cauvery River, India resulted from channel modification. Detailed studies have been conducted in two sectors located in the river basin in areas around Talakad and Manchanahalli, Palaeochannels have been demarcated and delineated by using remote sensing technique. Later the hydrological parameters were estimated for analyzing the hydrological signatures of palaeochannels resulted from channel modification. It has been observed that these parameters are unique in areas, which are located at or near palaeochannels

    Characterizing Emerging Canine H3 Influenza Viruses.

    Get PDF
    The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned
    corecore