148 research outputs found

    Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution

    Get PDF
    Recent developments in PHENIX are reported that allow the use of reference-model torsion restraints, secondary-structure hydrogen-bond restraints and Ramachandran restraints for improved macromolecular refinement in phenix.refine at low resolution

    Graphical tools for macromolecular crystallography in PHENIX.

    Get PDF
    A new Python-based graphical user interface for the PHENIX suite of crystallography software is described. This interface unifies the command-line programs and their graphical displays, simplifying the development of new interfaces and avoiding duplication of function. With careful design, graphical interfaces can be displayed automatically, instead of being manually constructed. The resulting package is easily maintained and extended as new programs are added or modified

    A Trans-Atlantic Perspective on Stagnation in Clinical Translation of Antimicrobial Strategies for the Control of Biomaterial-Implant-Associated Infection

    Get PDF
    Current regulatory requirements impede clinical translation and market introduction of many new antimicrobial combination implants and devices, causing unnecessary patient suffering, doctor frustration, and costs to healthcare payers. Regulatory requirements of antimicrobial combination implants and devices should be thoroughly revisited and their approval allowed based on enrichment of benefit demonstrations from high-risk patient groups and populations or device components to facilitate their clinical translation. Biomaterial implant and devices equipped with antimicrobial strategies and approved based on enrichment claims should be mandatorily enrolled in global registry studies supervised by regulatory agencies for a minimum five-year period or until statistically validated evidence for noninferiority or superiority of claims is demonstrated. With these recommendations, this trans-Atlantic consortium of academicians and clinicians takes its responsibility to actively seek to relieve the factors that stagnate downward clinical translation and availability of antimicrobial combination implants and devices. Improved dialogue between the various key players involved in the current translational blockade, which include patients, academicians and doctors, policymakers, regulatory agencies, manufacturers, and healthcare payers, is urgently needed.</p

    Phylogenomics Reveals Ancient Gene Tree Discordance in the Amphibian Tree of Life

    Get PDF
    Molecular phylogenies have yielded strong support for many parts of the amphibian Tree of Life, but poor support for the resolution of deeper nodes, including relationships among families and orders. To clarify these relationships, we provide a phylogenomic perspective on amphibian relationships by developing a taxon-specific Anchored Hybrid Enrichment protocol targeting hundreds of conserved exons which are effective across the class. After obtaining data from 220 loci for 286 species (representing 94% of the families and 44% of the genera), we estimate a phylogeny for extant amphibians and identify gene tree–species tree conflict across the deepest branches of the amphibian phylogeny. We perform locus-by-locus genealogical interrogation of alternative topological hypotheses for amphibian monophyly, focusing on interordinal relationships. We find that phylogenetic signal deep in the amphibian phylogeny varies greatly across loci in a manner that is consistent with incomplete lineage sorting in the ancestral lineage of extant amphibians. Our results overwhelmingly support amphibian monophyly and a sister relationship between frogs and salamanders, consistent with the Batrachia hypothesis. Species tree analyses converge on a small set of topological hypotheses for the relationships among extant amphibian families. These results clarify several contentious portions of the amphibian Tree of Life, which in conjunction with a set of vetted fossil calibrations, support a surprisingly younger timescale for crown and ordinal amphibian diversification than previously reported. More broadly, our study provides insight into the sources, magnitudes, and heterogeneity of support across loci in phylogenomic data sets

    PHENIX: a comprehensive Python-based system for macromolecular structure solution.

    Get PDF
    Macromolecular X-ray crystallography is routinely applied to understand biological processes at a molecular level. However, significant time and effort are still required to solve and complete many of these structures because of the need for manual interpretation of complex numerical data using many software packages and the repeated use of interactive three-dimensional graphics. PHENIX has been developed to provide a comprehensive system for macromolecular crystallographic structure solution with an emphasis on the automation of all procedures. This has relied on the development of algorithms that minimize or eliminate subjective input, the development of algorithms that automate procedures that are traditionally performed by hand and, finally, the development of a framework that allows a tight integration between the algorithms

    phenix.model_vs_data: a high-level tool for the calculation of crystallographic model and data statistics

    Get PDF
    Application of phenix.model_vs_data to the contents of the Protein Data Bank shows that the vast majority of deposited structures can be automatically analyzed to reproduce the reported quality statistics. However, the small fraction of structures that elude automated re-analysis highlight areas where new software developments can help retain valuable information for future analysis

    Contemporary Homozygous Familial Hypercholesterolemia in the United States: Insights From the CASCADE FH Registry

    Get PDF
    Erratum in: J Am Heart Assoc. 2023 Jun 6;12(11):e027706. doi: 10.1161/JAHA.122.027706. Epub 2023 Jun 1.Free PMC article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227232/Background: Homozygous familial hypercholesterolemia (HoFH) is a rare, treatment-resistant disorder characterized by earlyonset atherosclerotic and aortic valvular cardiovascular disease if left untreated. Contemporary information on HoFH in the United States is lacking, and the extent of underdiagnosis and undertreatment is uncertain. Methods and Results: Data were analyzed from 67 children and adults with clinically diagnosed HoFH from the CASCADE (Cascade Screening for Awareness and Detection) FH Registry. Genetic diagnosis was confirmed in 43 patients. We used the clinical characteristics of genetically confirmed patients with HoFH to query the Family Heart Database, a US anonymized payer health database, to estimate the number of patients with similar lipid profiles in a “real-world” setting. Untreated lowdensity lipoprotein cholesterol levels were lower in adults than children (533 versus 776mg/dL; P=0.001). At enrollment, atherosclerotic cardiovascular disease and supravalvular and aortic valve stenosis were present in 78.4% and 43.8% and 25.5% and 18.8% of adults and children, respectively. At most recent follow-up, despite multiple lipid-lowering treatment, low-density lipoprotein cholesterol goals were achieved in only a minority of adults and children. Query of the Family Heart Database identified 277 individuals with profiles similar to patients with genetically confirmed HoFH. Advanced lipid-lowering treatments were prescribed for 18%; 40% were on no lipid-lowering treatment; atherosclerotic cardiovascular disease was reported in 20%; familial hypercholesterolemia diagnosis was uncommon. Conclusions: Only patients with the most severe HoFH phenotypes are diagnosed early. HoFH remains challenging to treat. Results from the Family Heart Database indicate HoFH is systemically underdiagnosed and undertreated. Earlier screening, aggressive lipid-lowering treatments, and guideline implementation are required to reduce disease burden in HoFH.Dr Martin is supported by grants/contracts from the American Heart Association (20SFRN35380046, 20SFRN35490003, 878924, and 882415), Patient‐Centered Outcomes Research Institute (PCORI) (ME‐2019C1‐15328), National Institutes of Health (NIH) (R01AG071032 and P01 HL108800), the David and June Trone Family Foundation, Pollin Digital Health Innovation Fund, and Sandra and Larry Small; Dr Knowles is supported by the NIH through grants P30 DK116074 (to the Stanford Diabetes Research Center), R01 DK116750, R01 DK120565, and R01 DK106236; and by a grant from the Bilateral Science Foundation. Dr Linton is supported by NIH grants P01HL116263, HL148137, HL159487, and HL146134.info:eu-repo/semantics/publishedVersio
    corecore