32 research outputs found

    Organ-on-a-chip: current gaps and future directions.

    Get PDF
    As an emerging hot topic of the last decade, Organ on Chip (OoC) is a new technology that is attracting interest from both basic and translational scientists. The Biochemical Society, with its mission of supporting the advancement of science, with addressing grand challenges that have societal impact, has included OoC into their agenda to review the current state of the art, bottlenecks and future directions. This conference brought together representatives of the main stakeholders in the OoC field including academics, end-users, regulators and technology developers to discuss and identify requirements for this new technology to deliver on par with the expectations and the key challenges and gaps that still need to be addressed to achieve robust human-relevant tools, able to positively impact decision making in the pharmaceutical industry and reduce overreliance on poorly predictive animal models

    Rock-Eval pyrolysis discriminates soil macro-aggregates formed by plants and earthworms

    Get PDF
    Plants and earthworms, as soil ecosystem engineers, play a crucial role during stabilisation of organic matter in soil through its incorporation into soil aggregates. It is therefore essential to better understand the mechanisms and interactions of soil engineering organisms regarding soil organic matter stabilisation. Several methods have already been successfully applied to differentiate soil aggregates by their origin, but they cannot specify the degree of organic matter stability within soil aggregates. Rock-Eval pyrolysis has already been proved to be pertinent for analyses of soil organic matter bulk chemistry and thermal stability, but it has not yet been directly applied to identify biogenic organic matter signatures within soil aggregates. In this study, Rock-Eval pyrolysis was used for the identification of the soil aggregate origin as well as for the determination of the soil organic matter bulk chemistry and thermal stability in a controlled experiment. Mesocosms were set up, containing treatments with a plant, an earthworm species, or both. Water stable soil macro-aggregates > 250 μm were sampled and tested with Rock-Eval pyrolysis after a two-month incubation period. Rock-Eval pyrolysis was able to differentiate soil macro-aggregates by their origin, and to identify a specific signature for each treatment. Macro-aggregates from the plant and earthworm treatment were characterized by a mixed signature incoming from the two soil engineers, indicating that both engineers contribute concomitantly to soil aggregate formation. Organic matter thermal stability was not positively affected by earthworms and even tends to decrease for the plant treatment, emphasising that organic matter was mainly physically protected during the incubation period, but not stabilised. However, future research is required to test if signatures for the tested organisms are species-specific or generally assignable to other plant and earthworm species

    Prognostic role of HPV integration status and molecular profile in advanced anal carcinoma: An ancillary study to the epitopes-HPV02 trial.

    Full text link
    peer reviewedSquamous Cell Carcinoma of the Anal canal (SCCA) is a rare disease associated with a Human Papillomavirus (HPV) infection in most cases, predominantly the HPV16 genotype. About 15% of SCCA are diagnosed in metastatic stage and some will relapse after initial chemoradiotherapy (CRT). Treatment of patients by Docetaxel, Cisplatin and 5-fluorouracil (DCF) has been recently shown to improve their complete remission and progression-free survival. The aim of this retrospective study was to explore the impact of HPV infection, HPV DNA integration, TERT promoter mutational status and somatic mutations of oncogenes on both progression-free (PFS) and overall survivals (OS) of patients treated by DCF. Samples obtained from 49 patients included in the Epitopes-HPV02 clinical trial, diagnosed with metastatic or non-resectable local recurrent SCCA treated by DCF, were used for analyses. Median PFS and OS were not associated with HPV status. Patients with episomal HPV had an improved PFS compared with SCCA patients with integrated HPV genome (p=0.07). TERT promoter mutations were rarely observed and did not specifically distribute in a subset of SCCA and did not impact DCF efficacy. Among the 42 genes investigated, few gene alterations were observed, and were in majority amplifications (68.4%), but none were significantly correlated to PFS. As no biomarker is significantly associated with patients' survival, it prompts us to include every patient failing CRT or with metastatic disease in DCF strategy

    Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes

    Get PDF
    Conventional functional electrical stimulation aims to restore functional motor activity of patients with disabilities resulting from spinal cord injury or neurological disorders. However, intervention with functional electrical stimulation in neurological diseases lacks an effective implantable method that suppresses unwanted nerve signals. We have developed an electrochemical method to activate and inhibit a nerve by electrically modulating ion concentrations in situ along the nerve. Using ion-selective membranes to achieve different excitability states of the nerve, we observe either a reduction of the electrical threshold for stimulation by up to approximately 40%, or voluntary, reversible inhibition of nerve signal propagation. This low-threshold electrochemical stimulation method is applicable in current implantable neuroprosthetic devices, whereas the on-demand nerve-blocking mechanism could offer effective clinical intervention in disease states caused by uncontrolled nerve activation, such as epilepsy and chronic pain syndromes.Massachusetts Institute of Technology. Faculty Discretionary Research FundNational Institutes of Health (U.S.) (Award UL1 RR 025758)Harvard Catalyst (Grant

    A dualistic model of primary anal canal adenocarcinoma with distinct cellular origins, etiologies, inflammatory microenvironments and mutational signatures: implications for personalised medicine.

    Get PDF
    Primary adenocarcinoma of the anal canal is a rare and aggressive gastrointestinal disease with unclear pathogenesis. Because of its rarity, no clear clinical practice guideline has been defined and a targeted therapeutic armamentarium has yet to be developed. The present article aimed at addressing this information gap by in-depth characterising the anal glandular neoplasms at the histologic, immunologic, genomic and epidemiologic levels. In this multi-institutional study, we first examined the histological features displayed by each collected tumour (n = 74) and analysed their etiological relationship with human papillomavirus (HPV) infection. The intratumoural immune cell subsets (CD4, CD8, Foxp3), the expression of immune checkpoints (PD-1, PD-L1), the defect in mismatch repair proteins and the mutation analysis of multiple clinically relevant genes in the gastrointestinal cancer setting were also determined. Finally, the prognostic significance of each clinicopathological variable was assessed. Phenotypic analysis revealed two region-specific subtypes of anal canal adenocarcinoma. The significant differences in the HPV status, density of tumour-infiltrating lymphocytes, expression of immune checkpoints and mutational profile of several targetable genes further supported the separation of these latter neoplasms into two distinct entities. Importantly, anal gland/transitional-type cancers, which poorly respond to standard treatments, displayed less mutations in downstream effectors of the EGFR signalling pathway (i.e., KRAS and NRAS) and demonstrated a significantly higher expression of the immune inhibitory ligand-receptor pair PD-1/PD-L1 compared to their counterparts arising from the colorectal mucosa. Taken together, the findings reported in the present article reveal, for the first time, that glandular neoplasms of the anal canal arise by HPV-dependent or independent pathways. These etiological differences leads to both individual immune profiles and mutational landscapes that can be targeted for therapeutic benefits

    A global horizon scan of the future impacts of robotics and autonomous systems on urban ecosystems

    Get PDF
    Technology is transforming societies worldwide. A major innovation is the emergence of robotics and autonomous systems (RAS), which have the potential to revolutionize cities for both people and nature. Nonetheless, the opportunities and challenges associated with RAS for urban ecosystems have yet to be considered systematically. Here, we report the findings of an online horizon scan involving 170 expert participants from 35 countries. We conclude that RAS are likely to transform land use, transport systems and human–nature interactions. The prioritized opportunities were primarily centred on the deployment of RAS for the monitoring and management of biodiversity and ecosystems. Fewer challenges were prioritized. Those that were emphasized concerns surrounding waste from unrecovered RAS, and the quality and interpretation of RAS-collected data. Although the future impacts of RAS for urban ecosystems are difficult to predict, examining potentially important developments early is essential if we are to avoid detrimental consequences but fully realize the benefits

    Genetic predisposition to cancer in Williams-Beuren syndrome

    No full text
    Le syndrome de Williams-Beuren (SWB} est une maladie génétique rare causée par une microdélétion de la région 7q11.23. A la suite de l'observation clinique d'une jeune fille atteinte du SWB ayant développé un lymphome de Burkitt à l'âge de 7 ans, nous nous sommes intéressé au lien génétique entre SWB et cancer. L'étude d'une série de cas de cancers survenus chez des enfants atteints de SWB a montré que les lymphomes non-hodgkiniens de type B étaient surreprésentés dans cette population puisque 73% des cancers chez les enfants atteints du SWB étaient des LNH-B. La région critique du SWB a été explorée par CGH-array et séquencage haut-débit dans les échantillons sains et tumoraux de 2 patients atteints de SWB. Aucune perte d'hétérozygotie de la région 7q11.23 n'a été trouvé. En outre, une délétion somatique de la région 7q11.23 a été identifiée dans un lymphome de Burkitt sporadique (Guenat D et al., J Hematol Oncol, 2014). Nous avons ensuite exploré les mécanismes de réponses aux dommages à l'ADN dans des lignées de fibroblastes primaires dérivées de patients atteints du SWB ainsi que dans des lignées 293T traitées avec des siRNA ciblant RFC2, BAZ1B et GTF2/, 3 gènes localisés en 7q11.23 et codant des protéines de réparation de l'ADN. Les cellules dérivées de patients SWB ont montré un défaut de signalisation dans les voies ATM/ATR-dépendantes en réponse aux dommages à l'ADN (Guenat D et al., DNA repair, article soumis). L'haploinsuffisance de la région 7q11.23 associée au SWB pourrait donc jouer un rôle dans la lymphomagenèse B par l'altération de voies de réponse aux dommages à l'ADN ATM/ATR-dépendantes. Cependant, ces résultats mériteraient d'être confirmés dans des modèles murins reproduisant le génotype complet du SWB. Enfin, des données épidémiologiques exhaustives sur l'incidence des pathologies tumorales chez les individus atteints du SWB sont indispensables pour affirmer qu'une prédisposition au cancer existe chez ces patientsWilliams-Beuren syndrome (WBS) is a genetic disorder caused by a microdeletion at 7q11.23. The case of a young girl with WBS who developed a Burkitt lymphoma at the age of 7 leads us to explore the genetic link between WBS and cancer. The study of a series of cancers occurred in WBS patients during childhood have shown that B-cell non hodgkin lymphoma are over-represented in this population since 73% cancer cases in WBS were B-NHL. The critical region of WBS was explored by array-CGH and high-throughput sequencing in normal and tumor samples from WBS patients. No loss of heterozygosity at 7q11.23 was found. ln addition, a somatic deletion at 7q11.23 was observed in a sporadic case of Burkitt lymphoma (Guenat D et al., J Hematol Oncol, 2014). DNA damage response mechanisms were then explored in primary fibroblast cell lines derived from WBS patients as well as in 293T cell line treated with siRNA targeting RFC2, GTF2/ and BAZ1 B, 3 genes mapping at 7q11.23 that encode proteins involved in DNA damage response. WBS patients cell lines have shown a defect in ATM/ ATR-dependent DNA damage response pathways (Guenat D et al., DNA Repair, article submitted). Haploinsufficiency of the 7q11.23 region associated with WBS might play a role in B-cell lymphomagenesis through the alteration of ATM/ATR-dependent DNA damage response pathways. However, these results deserve to be confirmed in mouse models that reproduce the complete genotype of human WBS. Finally, strong epidemiological data would be required to confirm the predisposition to cancer in WBS patients

    Nouveaux biomarqueurs viraux des lésions du col de l'utérus associées aux papillomavirus humains.

    No full text
    International audienceHigh-risk human Papillomaviruses (HR-HPV) - the most carcinogenic infectious agents - are responsible for the development of cervical cancer. The knowledge of HPV infection natural history and viral carcinogenesis led to the investigation of viral biomarkers (genotype, viral load, integration, E6/E7 mRNA expression, viral DNA methylation) from clinical samples representative of the evolution of cervical lesions. Mostly concerning HPV16, the literature data agree on an increase of viral load, proportion of samples harboring integrated HPV genomes and methylation of CpG located in the L1 gene with the lesion severity. Viral load and L1 CpG methylation are interesting for clinical practice since appropriate cutoff values allow the identification of precancerous lesions with a high specificity. Although HPV E6/E7 transcript detection is more specific than HPV DNA detection to identify precancerous cervical lesions, viral transcript quantitation and cutoff value determination are unlikely feasible in clinical practice. Taken together, data highlight promising biomarkers that could be integrated to screening algorithms
    corecore