130 research outputs found

    Carbon ordering in an aseismic shear zone : implications for Raman geothermometry and strain tracking

    Get PDF
    Acknowledgements: This study was carried out as part of a University of Aberdeen PhD, supported by the NERC (Natural Environment Research Council) Centre for Doctoral Training in Oil & Gas [grant number 316 NE/R01051X/1].Peer reviewedPostprin

    Dramatic robustness of a multiple delay dispersed interferometer to spectrograph errors: how mixing delays reduces or cancels wavelength drift

    Full text link
    We describe demonstrations of remarkable robustness to instrumental noises by using a multiple delay externally dispersed interferometer (EDI) on stellar observations at the Hale telescope. Previous observatory EDI demonstrations used a single delay. The EDI (also called “TEDI”) boosted the 2,700 resolution of the native TripleSpec NIR spectrograph (950-2450 nm) by as much as 10x to 27,000, using 7 overlapping delays up to 3 cm. We observed superb rejection of fixed pattern noises due to bad pixels, since the fringing signal responds only to changes in multiple exposures synchronous to the applied delay dithering. Remarkably, we observed a ~20x reduction of reaction in the output spectrum to PSF shifts of the native spectrograph along the dispersion direction, using our standard processing. This allowed high resolution observations under conditions of severe and irregular PSF drift otherwise not possible without the interferometer. Furthermore, we recently discovered an improved method of weighting and mixing data between pairs of delays that can theoretically further reduce the net reaction to PSF drift to zero. We demonstrate a 350x reduction in reaction to a native PSF shift using a simple simulation. This technique could similarly reduce radial velocity noise for future EDI’s that use two delays overlapped in delay space (or a single delay overlapping the native peak). Finally, we show an extremely high dynamic range EDI measurement of our ThAr lamp compared to a literature ThAr spectrum, observing weak features (~0.001x height of nearest strong line) that occur between the major lines. Because of individuality of each reference lamp, accurate knowledge of its spectrum between the (unfortunately) sparse major lines is important for precision radial velocimetry

    TEDI: the TripleSpec Exoplanet Discovery Instrument

    Full text link
    The TEDI (TripleSpec - Exoplanet Discovery Instrument) will be the first instrument fielded specifically for finding low-mass stellar companions. The instrument is a near infra-red interferometric spectrometer used as a radial velocimeter. TEDI joins Externally Dispersed Interferometery (EDI) with an efficient, medium-resolution, near IR (0.9 - 2.4 micron) echelle spectrometer, TripleSpec, at the Palomar 200" telescope. We describe the instrument and its radial velocimetry demonstration program to observe cool stars.Comment: 6 Pages, To Appear in SPIE Volume 6693, Techniques and Instrumentation for Detection of Exoplanets II

    Investment behaviour of machine-building enterprises and the capital cost

    Get PDF
    The formation of an effective financial and investment model of engineering production requires the organization of capital cost management. This article is intended to consider the extent to which the features of the investment behaviour of Russian engineering enterprises affect the cost of capital. © Published under licence by IOP Publishing Ltd

    Validation of Twelve Small Kepler Transiting Planets in the Habitable Zone

    Get PDF
    We present an investigation of twelve candidate transiting planets from Kepler with orbital periods ranging from 34 to 207 days, selected from initial indications that they are small and potentially in the habitable zone (HZ) of their parent stars. Few of these objects are known. The expected Doppler signals are too small to confirm them by demonstrating that their masses are in the planetary regime. Here we verify their planetary nature by validating them statistically using the BLENDER technique, which simulates large numbers of false positives and compares the resulting light curves with the Kepler photometry. This analysis was supplemented with new follow-up observations (high-resolution optical and near-infrared spectroscopy, adaptive optics imaging, and speckle interferometry), as well as an analysis of the flux centroids. For eleven of them (KOI-0571.05, 1422.04, 1422.05, 2529.02, 3255.01, 3284.01, 4005.01, 4087.01, 4622.01, 4742.01, and 4745.01) we show that the likelihood they are true planets is far greater than that of a false positive, to a confidence level of 99.73% (3 sigma) or higher. For KOI-4427.01 the confidence level is about 99.2% (2.6 sigma). With our accurate characterization of the GKM host stars, the derived planetary radii range from 1.1 to 2.7 R_Earth. All twelve objects are confirmed to be in the HZ, and nine are small enough to be rocky. Excluding three of them that have been previously validated by others, our study doubles the number of known rocky planets in the HZ. KOI-3284.01 (Kepler-438b) and KOI-4742.01 (Kepler-442b) are the planets most similar to the Earth discovered to date when considering their size and incident flux jointly.Comment: 27 pages in emulateapj format, including tables and figures. To appear in The Astrophysical Journa

    Gene flow mediates the role of sex chromosome meiotic drive during complex speciation

    Get PDF
    During speciation, sex chromosomes often accumulate interspecific genetic incompatibilities faster than the rest of the genome. The drive theory posits that sex chromosomes are susceptible to recurrent bouts of meiotic drive and suppression, causing the evolutionary build- up of divergent cryptic sex-linked drive systems and, incidentally, genetic incompatibilities. To assess the role of drive during speciation, we combine high-resolution genetic mapping of X-linked hybrid male sterility with population genomics analyses of divergence and recent gene flow between the fruitfly species, Drosophila mauritiana and D. simulans. Our findings reveal a high density of genetic incompatibilities and a corresponding dearth of gene flow on the X chromosome. Surprisingly, we find that a known drive element recently migrated between species and, rather than contributing to interspecific divergence, caused a strong reduction in local sequence divergence, undermining the evolution of hybrid sterility. Gene flow can therefore mediate the effects of selfish genetic elements during speciation

    Predicting microbial water quality with models: Over-arching questions for managing risk in agricultural catchments

    Get PDF
    The application of models to predict concentrations of faecal indicator organisms (FIOs) in environmental systems plays an important role for guiding decision-making associated with the management of microbial water quality. In recent years there has been an increasing demand by policy-makers for models to help inform FIO dynamics in order to prioritise efforts for environmental and human-health protection. However, given the limited evidence-base on which FIO models are built relative to other agricultural pollutants (e.g. nutrients) it is imperative that the end-user expectations of FIO models are appropriately managed. In response, this commentary highlights four over-arching questions associated with: (i) model purpose; (ii) modelling approach; (iii) data availability; and (iv) model application, that must be considered as part of good practice prior to the deployment of any modelling approach to predict FIO behaviour in catchment systems. A series of short and longer-term research priorities are proposed in response to these questions in order to promote better model deployment in the field of catchment microbial dynamics

    The Revised TESS Input Catalog and Candidate Target List

    Get PDF
    We describe the catalogs assembled and the algorithms used to populate the revised TESS Input Catalog (TIC), based on the incorporation of the Gaia second data release. We also describe a revised ranking system for prioritizing stars for 2-minute cadence observations, and assemble a revised Candidate Target List (CTL) using that ranking. The TIC is available on the Mikulski Archive for Space Telescopes (MAST) server, and an enhanced CTL is available through the Filtergraph data visualization portal system at the URL http://filtergraph.vanderbilt.edu/tess_ctl.Comment: 30 pages, 16 figures, submitted to AAS Journals; provided to the community in advance of publication in conjunction with public release of the TIC/CTL on 28 May 201

    Three red suns in the sky: A transiting, terrestrial planet in a triple M-dwarf system at 6.9 pc

    Get PDF
    We present the discovery from Transiting Exoplanet Survey Satellite (TESS) data of LTT 1445Ab. At a distance of 6.9 pc, it is the second nearest transiting exoplanet system found to date, and the closest one known for which the primary is an M dwarf. The host stellar system consists of three mid-to-late M dwarfs in a hierarchical configuration, which are blended in one TESS pixel. We use MEarth data and results from the Science Processing Operations Center data validation report to determine that the planet transits the primary star in the system. The planet has a radius of 1.380.12+0.13{1.38}_{-0.12}^{+0.13} R{R}_{\oplus }, an orbital period of 5.358820.00031+0.00030{5.35882}_{-0.00031}^{+0.00030} days, and an equilibrium temperature of 43327+28{433}_{-27}^{+28} K. With radial velocities from the High Accuracy Radial Velocity Planet Searcher, we place a 3σ upper mass limit of 8.4 M{M}_{\oplus } on the planet. LTT 1445Ab provides one of the best opportunities to date for the spectroscopic study of the atmosphere of a terrestrial world. We also present a detailed characterization of the host stellar system. We use high-resolution spectroscopy and imaging to rule out the presence of any other close stellar or brown dwarf companions. Nineteen years of photometric monitoring of A and BC indicate a moderate amount of variability, in agreement with that observed in the TESS light-curve data. We derive a preliminary astrometric orbit for the BC pair that reveals an edge-on and eccentric configuration. The presence of a transiting planet in this system hints that the entire system may be co-planar, implying that the system may have formed from the early fragmentation of an individual protostellar core.Accepted manuscrip

    Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data

    Get PDF
    New transiting planet candidates are identified in sixteen months (May 2009 - September 2010) of data from the Kepler spacecraft. Nearly five thousand periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1,091 viable new planet candidates, bringing the total count up to over 2,300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis which identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the new candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (Rp/R*), reduced semi-major axis (d/R*), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (197% for candidates smaller than 2Re compared to 52% for candidates larger than 2Re) and those at longer orbital periods (123% for candidates outside of 50-day orbits versus 85% for candidates inside of 50-day orbits). The gains are larger than expected from increasing the observing window from thirteen months (Quarter 1-- Quarter 5) to sixteen months (Quarter 1 -- Quarter 6). This demonstrates the benefit of continued development of pipeline analysis software. The fraction of all host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the Habitable Zone are forthcoming if, indeed, such planets are abundant.Comment: Submitted to ApJS. Machine-readable tables are available at http://kepler.nasa.gov, http://archive.stsci.edu/kepler/results.html, and the NASA Exoplanet Archiv
    corecore