203 research outputs found

    Mutation of L-2,3-diaminopropionic acid synthase genes blocks staphyloferrin B synthesis in Staphylococcus aureus

    Get PDF
    BACKGROUND: Staphylococcus aureus synthesizes two siderophores, staphyloferrin A and staphyloferrin B, that promote iron-restricted growth. Previous work on the biosynthesis of staphyloferrin B has focused on the role of the synthetase enzymes, encoded from within the sbnA-I operon, which build the siderophore from the precursor molecules citrate, alpha-ketoglutarate and L-2,3-diaminopropionic acid. However, no information yet exists on several other enzymes, expressed from the biosynthetic cluster, that are thought to be involved in the synthesis of the precursors (or synthetase substrates) themselves. RESULTS: Using mutants carrying insertions in sbnA and sbnB, we show that these two genes are essential for the synthesis of staphyloferrin B, and that supplementation of the growth medium with L-2,3-diaminopropionic acid can bypass the block in staphyloferrin B synthesis displayed by the mutants. Several mechanisms are proposed for how the enzymes SbnA, with similarity to cysteine synthase enzymes, and SbnB, with similarity to amino acid dehydrogenases and ornithine cyclodeaminases, function together in the synthesis of this unusual nonproteinogenic amino acid L-2,3-diaminopropionic acid. CONCLUSIONS: Mutation of either sbnA or sbnB result in abrogation of synthesis of staphyloferrin B, a siderophore that contributes to iron-restricted growth of S. aureus. The loss of staphyloferrin B synthesis is due to an inability to synthesize the unusual amino acid L-2,3-diaminopropionic acid which is an important, iron-liganding component of the siderophore structure. It is proposed that SbnA and SbnB function together as an L-Dap synthase in the S. aureus cell

    Paradoxical acclimation responses in the thermal performance of insect immunity.

    Get PDF
    Winter is accompanied by multiple stressors, and the interactions between cold and pathogen stress potentially determine the overwintering success of insects. Thus, it is necessary to explore the thermal performance of the insect immune system. We cold-acclimated spring field crickets, Gryllus veletis, to 6 Ā°C for 7 days and measured the thermal performance of potential (lysozyme and phenoloxidase activity) and realised (bacterial clearance and melanisation) immune responses. Cold acclimation decreased the critical thermal minimum from -0.5 Ā± 0.25 to -2.1 Ā± 0.18 Ā°C, and chill coma recovery time after 72 h at -2 Ā°C from 16.8 Ā± 4.9 to 5.2 Ā± 2.0 min. Measures of both potential and realised immunity followed a typical thermal performance curve, decreasing with decreasing temperature. However, cold acclimation further decreased realised immunity at low, but not high, temperatures; effectively, immune activity became paradoxically specialised to higher temperatures. Thus, cold acclimation induced mismatched thermal responses between locomotor and immune systems, as well as within the immune system itself. We conclude that cold acclimation in insects appears to preferentially improve cold tolerance over whole-animal immune performance at low temperatures, and that the differential thermal performance of physiological responses to multiple pressures must be considered when predicting ectotherms\u27 response to climate change

    The assembly system for the lipopolysaccharide R2 core-type of Escherichia coli is a hybrid of those found in Escherichia coli K-12 and Salmonella enterica. Structure and function of the R2 WaaK and WaaL homologs.

    Get PDF
    In Escherichia coli F632, the 14-kilobase pair chromosomal region located between waaC (formerly rfaC) and waaA (kdtA) contains genes encoding enzymes required for the synthesis of the type R2 core oligosaccharide portion of lipopolysaccharide. Ten of the 13 open reading frames encode predicted products sharing greater than 90% total similarity with homologs in E. coli K-12. However, the products of waaK (rfaK) and waaL (rfaL) each resemble homologs in Salmonella enterica serovar Typhimurium but share little similarity with E. coli K-12. The F632 WaaK and WaaL proteins therefore define differences between the type R2 and K-12 outer core oligosaccharides of E. coli lipopolysaccharides. Based on the chemical structure of the core oligosaccharide of an E. coli F632 waaK::aacC1 mutant and in vitro glycosyltransferase analyses, waaK encodes UDP-N-acetylglucosamine:(glucose) lipopolysaccharide alpha1, 2-N-acetylglucosaminyltransferase. The WaaK enzyme adds a terminal GlcNAc side branch substituent that is crucial for the recognition of core oligosaccharide acceptor by the O-polysaccharide ligase, WaaL. Results of complementation analyses of E. coli K-12 and F632 waaL mutants suggest that structural differences between the WaaL proteins play a role in recognition of, and interaction with, terminal lipopolysaccharide core moieties

    A Fluorescence Based-Proliferation Assay for the Identification of Replicating Bacteria Within Host Cells

    Get PDF
    Understanding host pathogen interactions is paramount to the development of novel antimicrobials. An important facet of this pursuit is the accurate characterization of pathogen replication within infected host cells. Here we describe the use of a fluorescence-based proliferation assay to identify intracellular populations of replicating bacteria at the subcellular level. Using Staphylococcus aureus as a model Gram-positive bacterial pathogen and macrophages as a model host phagocyte, we demonstrate this assay can be used to reliably identify individual phagocytes that contain replicating bacteria. Furthermore, we demonstrate this assay is compatible with additional cellular probes that enable characterization of cellular compartments in which replicating bacteria reside. Finally, we demonstrate that this assay facilitates the investigation of both Gram-negative and Gram-positive bacteria within host cells

    Involvement of waaY, waaQ, and waaP in the Modification of Escherichia coliLipopolysaccharide and Their Role in the Formation of a Stable Outer Membrane *

    Get PDF
    The waaY, waaQ, and waaP genes are located in the central operon of the waa (formerly rfa) locus on the chromosome of Escherichia coli. This locus contains genes whose products are involved in the assembly of the core region of the lipopolysaccharide molecule. In the R1 core prototype strain, E. coli F470, there are nine genes in this operon, and all but waaY, waaQ, and waaP have been assigned function. In this study, the waaY, waaQ, and waaP genes were independently mutated by insertion of a non-polar antibiotic resistance cassette, and the structures of the resulting mutant core oligosaccharides were determined by chemical analyses and phosphorus-nuclear magnetic resonance spectroscopy. All three of these mutations were shown to affect the modification of the heptose region of the core, a region whose structure is critical to outer membrane stability. Mutation of waaY resulted in a core oligosaccharide devoid of phosphate on HepII. Mutation of waaQ resulted in loss of the branch HepIII residue on HepII and impeded the activity of WaaY. Mutation of waaP resulted in loss of phosphoryl substituents on HepI and obviated WaaQ and WaaY activity. Only mutation of waaP resulted in hypersensitivity to novobiocin and sodium dodecyl sulfate, a characteristic of deep-rough mutations

    An ECF-type transporter scavenges heme to overcome iron-limitation in Staphylococcus lugdunensis

    Get PDF
    Energy-coupling factor type transporters (ECF) represent trace nutrient acquisition systems. Substrate binding components of ECF-transporters are membrane proteins with extraordinary affinity, allowing them to scavenge trace amounts of ligand. A number of molecules have been described as substrates of ECF-transporters, but an involvement in iron-acquisition is unknown. Host-induced iron limitation during infection represents an effective mechanism to limit bacterial proliferation. We identified the iron-regulated ECF-transporter Lha in the opportunistic bacterial pathogen Staphylococcus lugdunensis and show that the transporter is specific for heme. The recombinant substrate-specific subunit LhaS accepted heme from diverse host-derived hemoproteins. Using isogenic mutants and recombinant expression of Lha, we demonstrate that its function is independent of the canonical heme acquisition system Isd and allows proliferation on human cells as sources of nutrient iron. Our findings reveal a unique strategy of nutritional heme acquisition and provide the first example of an ECF-transporter involved in overcoming host-induced nutritional limitation

    Low extracellular vesicle concentrations predict survival in patients with heart failure

    Get PDF
    BackgroundHeart disease is of worldwide importance due to high morbidity and mortality. Extracellular vesicle (EV) concentration and size represent novel diagnostic and prognostic biomarkers, e.g. in patients with liver cancer, but data on their prognostic relevance in heart disease are lacking. Here, we investigated the role of EV concentration, size and zeta potential in patients with heart disease.MethodsVesicle size distribution, concentration and zeta potential were measured by nanoparticle tracking analysis (NTA) in 28 intensive care unit (ICU) and 20 standard care (SC) patients and 20 healthy controls.ResultsPatients with any disease had a lower zeta potential compared to the healthy controls. Vesicle size (X50) was significantly higher in ICU patients (245ā€…nm) with heart disease as compared to those patients with heart disease receiving standard care (195ā€…nm), or healthy controls (215ā€…nm) (pā€‰=ā€‰0.001). Notably, EV concentration was lower in ICU patients with heart disease (4.68ā€‰Ć—ā€‰1010 particles/ml) compared to SC patients with heart disease (7,62ā€‰Ć—ā€‰1010 particles/ml) and healthy controls (1.50ā€‰Ć—ā€‰1011 particles/ml) (pā€‰=ā€‰0.002). Extracellular vesicle concentration is prognostic for overall survival in patients with heart disease. Overall survival is significantly reduced when the vesicle concentration is below 5.55ā€‰Ć—ā€‰1010 particles/ml. Median overall survival was only 140 days in patients with vesicle concentrations below 5.55ā€‰Ć—ā€‰1010 particles/ml compared to 211 days in patients with vesicle concentrations above 5.55ā€‰Ć—ā€‰1010 particles/ml (pā€‰=ā€‰0.032).SummaryConcentration of EVs is a novel prognostic marker in ICU and SC patients with heart disease

    Patients with schizophrenia show deficits of working memory maintenance components in circuit-specific tasks

    Get PDF
    Working memory (WM) deficits are a neuropsychological core finding in patients with schizophrenia and also supposed to be a potential endophenotype of schizophrenia. Yet, there is a large heterogeneity between different WM tasks which is partly due to the lack of process specificity of the tasks applied. Therefore, we investigated WM functioning in patients with schizophrenia using process- and circuit-specific tasks. Thirty-one patients with schizophrenia and 47 controls were tested with respect to different aspects of verbal and visuospatial working memory using modified Sternberg paradigms in a computer-based behavioural experiment. Total group analysis revealed significant impairment of patients with schizophrenia in each of the tested WM components. Furthermore, we were able to identify subgroups of patients showing different patterns of selective deficits. Patients with schizophrenia exhibit specific and, in part, selective WM deficits with indirect but conclusive evidence of dysfunctions of the underlying neural networks. These deficits are present in tasks requiring only maintenance of verbal or visuospatial information. In contrast to a seemingly global working memory deficit, individual analysis revealed differential patterns of working memory impairments in patients with schizophrenia

    World checklist of hornworts and liverworts

    Get PDF
    A working checklist of accepted taxa worldwide is vital in achieving the goal of developing an online flora of all known plants by 2020 as part of the Global Strategy for Plant Conservation. We here present the first-ever worldwide checklist for liverworts (Marchantiophyta) and hornworts (Anthocerotophyta) that includes 7486 species in 398 genera representing 92 families from the two phyla. The checklist has far reaching implications and applications, including providing a valuable tool for taxonomists and systematists, analyzing phytogeographic and diversity patterns, aiding in the assessment of floristic and taxonomic knowledge, and identifying geographical gaps in our understanding of the global liverwort and hornwort flora. The checklist is derived from a working data set centralizing nomenclature, taxonomy and geography on a global scale. Prior to this effort a lack of centralization has been a major impediment for the study and analysis of species richness, conservation and systematic research at both regional and global scales. The success of this checklist, initiated in 2008, has been underpinned by its community approach involving taxonomic specialists working towards a consensus on taxonomy, nomenclature and distribution
    • ā€¦
    corecore