15 research outputs found

    Article Modelling potential impacts of bottom trawl fisheries on soft sediment biogeochemistry in the North Sea{

    Get PDF
    Bottom trawling causes physical disturbance to sediments particularly in shelf areas. The disturbance due to trawling is most significant in deeper areas with softer sediments where levels of natural disturbance due to wave and tidal action are low. In heavily fished areas, trawls may impact the same area of seabed more than four times per year. A single pass of a beam trawl, the heaviest gear routinely used in shelf sea fisheries, can kill 5-65% of the resident fauna and mix the top few cm of sediment. We expect that sediment community function, carbon mineralisation and biogeochemical fluxes will be strongly affected by trawling activity because the physical effects of trawling are equivalent to those of an extreme bioturbator, and yet, unlike bioturbating macrofauna, trawling does not directly contribute to community metabolism. We used an existing box-model of a generalised soft sediment system to examine the effects of trawling disturbance on carbon mineralisation and chemical concentrations. We contrasted the effects of a natural scenario, where bioturbation is a function of macrobenthos biomass, with an anthropogenic impact scenario where physical disturbance results from trawling rather than the action of bioturbating macrofauna. Simulation results suggest that the effects of low levels of trawling disturbance will be similar to those of natural bioturbators but that high levels of trawling disturbance prevent the modelled system from reaching equilibrium due to large carbon fluxes between oxic and anoxic carbon compartments. The presence of macrobenthos in the natural disturbance scenario allowed sediment chemical storage and fluxes to reach equilibrium. This is because the macrobenthos are important carbon consumers in the system whose presence reduces the magnitude of available carbon fluxes. In soft sediment systems, where the level physical disturbance due to waves and tides is low, model results suggest that intensive trawling disturbance could cause large fluctuations in benthic chemical fluxes and storage

    Observations of vertical mixing in autumn and its effect on the autumn phytoplankton bloom

    Get PDF
    This work examines the seasonal cycle of density structure and its influence on primary production in a temperate shelf sea, with a particular focus on the breakdown of stratification in autumn. We do this by combining new, high resolution observations of water column structure, meteorological forcing, nitrate and chlorophyll fluorescence collected between March 2014 and July 2015 on the North West European Shelf. Our results challenge the generally accepted assumption that convection dominates over wind driven mixing resulting in seasonal breakdown of stratification. Furthermore we found, that vertical mixing in autumn not only transformed the vertical density structure but also the vertical structure of chlorophyll biomass and surface nutrients. The subsurface chlorophyll maximum was eroded and a vertically homogeneous profile of chlorophyll biomass established itself above the pycnocline. This increased mixing also led to replenishment of surface nitrate concentrations, which supported an autumn phytoplankton bloom. While the significance of phytoplankton blooms in autumn has previously not been well quantified, we argue that these can act as a significant contributor to the seasonal drawdown of carbon

    Environmental controls on phytoplankton community composition in the Thames plume, UK

    No full text
    The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 ”M nitrate, 17 ”M silicate and 2 ”M phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m- 2 d- 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after ~ 30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 ”g L- 1. During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom-flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m- 2 d- 1 and/or silicate reaching potentially limiting concentrations (< 1 ”M). Post spring bloom, diatom dominance of the lower continuous summer phytoplankton biomass occurred despite the low silicate concentrations (Av. 0.7 ”M from June-August). Summer diatom dominance, generally due to Guinardia delicatula, was expected to be as a result of microzooplankton grazing, dominated by the heterotrophic dinoflagellate Noctiluca scintillans, controlling 0.7-5.0 ”m 'flagellate' fraction of the phytoplankton community with grazing rates up to 178% of 'flagellate' growth rate. The Thames plume region was therefore shown to be an active region of nutrient and phytoplankton processing and transport to the southern North Sea. The use of a combination of moorings and ship-based sampling was essential in understanding the factors influencing nutrient transport, phytoplankton biomass and species composition in this shelf sea plume region

    High frequency measurements of dissolved inorganic and organic nutrients using instrumented moorings in the southern and central North Sea

    No full text
    The aim of this study was to investigate the cycling of dissolved inorganic and organic nutrients using moored instrumented buoys (SmartBuoys) during the spring bloom in the North Sea. The instrumentation on the buoys enabled high frequency measurements of water-column integrated irradiance and in situ chlorophyll to be made, and also preserved water sample collection which were used for dissolved inorganic and organic nutrient analyses. The SmartBuoys were located in the year-round well-mixed plume zone associated with the River Thames and in the summer stratified central North Sea. These site locations allowed comparison of nutrient concentrations and cycling, and spring bloom development at two contrasting sites. The spring bloom was expected to be initiated at both stations due to increasing insolation and decreasing suspended load leading to higher water-column integrated irradiance. Due to differences in suspended load between the sites, the spring bloom started ~2 months earlier in the central North Sea. The spring bloom in the Thames plume also resulted in higher maximum phytoplankton biomass due to the higher pre-bloom nutrient concentrations associated with riverine input. The use of SmartBuoys is also shown to allow the cycling of dissolved organic nutrients to be examined over the critical, and often undersampled, spring bloom period. Dissolved Organic Nitrogen (DON) clearly increased during the spring bloom in the central North Sea compared to winter concentrations. DON also increased in the Thames plume although showing greater winter variability related to higher riverine and sedimentary dissolved organic matter input at this shallow (~18 m) coastal site. DON increase during the spring bloom was therefore related to primary production at both sites probably due to active release by phytoplankton. At both stations DON decreased to pre-bloom concentrations as the bloom declined suggesting the released DON was bioavailable and removed due to heterotrophic uptake and production. The preserved nutrient samples from the central North Sea site were also suitable for Dissolved Organic Phosphorus (DOP) analysis due to their low suspended load with similar trends and cycling to DON, albeit at lower concentrations. This suggested similar processes controlling both DON and DOP. The variable timing of short term events such as the spring bloom makes sampling away from coastal regions difficult without the use of autonomous technology. This study demonstrates for the first time the applicability of using preserved samples from automated buoys for the measurement of dissolved organic nutrients

    Modelling potential impacts of bottom trawl fisheries on soft sediment biogeochemistry in the North Sea†

    No full text
    Bottom trawling causes physical disturbance to sediments particularly in shelf areas. The disturbance due to trawling is most significant in deeper areas with softer sediments where levels of natural disturbance due to wave and tidal action are low. In heavily fished areas, trawls may impact the same area of seabed more than four times per year. A single pass of a beam trawl, the heaviest gear routinely used in shelf sea fisheries, can kill 5–65% of the resident fauna and mix the top few cm of sediment. We expect that sediment community function, carbon mineralisation and biogeochemical fluxes will be strongly affected by trawling activity because the physical effects of trawling are equivalent to those of an extreme bioturbator, and yet, unlike bioturbating macrofauna, trawling does not directly contribute to community metabolism. We used an existing box-model of a generalised soft sediment system to examine the effects of trawling disturbance on carbon mineralisation and chemical concentrations. We contrasted the effects of a natural scenario, where bioturbation is a function of macrobenthos biomass, with an anthropogenic impact scenario where physical disturbance results from trawling rather than the action of bioturbating macrofauna. Simulation results suggest that the effects of low levels of trawling disturbance will be similar to those of natural bioturbators but that high levels of trawling disturbance prevent the modelled system from reaching equilibrium due to large carbon fluxes between oxic and anoxic carbon compartments. The presence of macrobenthos in the natural disturbance scenario allowed sediment chemical storage and fluxes to reach equilibrium. This is because the macrobenthos are important carbon consumers in the system whose presence reduces the magnitude of available carbon fluxes. In soft sediment systems, where the level physical disturbance due to waves and tides is low, model results suggest that intensive trawling disturbance could cause large fluctuations in benthic chemical fluxes and storage.</p

    Modelling potential impacts of bottom trawl fisheries on soft sediment biogeochemistry in the North Sea

    Get PDF
    Bottom trawling causes physical disturbance to sediments particularly in shelf areas. The disturbance due to trawling is most significant in deeper areas with softer sediments where levels of natural disturbance due to wave and tidal action are low. In heavily fished areas, trawls may impact the same area of seabed more than four times per year. A single pass of a beam trawl, the heaviest gear routinely used in shelf sea fisheries, can kill 5-65% of the resident fauna and mix the top few cm of sediment. We expect that sediment community function, carbon mineralisation and biogeochemical fluxes will be strongly affected by trawling activity because the physical effects of trawling are equivalent to those of an extreme bioturbator, and yet, unlike bioturbating macrofauna, trawling does not directly contribute to community metabolism. We used an existing box-model of a generalised soft sediment system to examine the effects of trawling disturbance on carbon mineralisation and chemical concentrations. We contrasted the effects of a natural scenario, where bioturbation is a function of macrobenthos biomass, with an anthropogenic impact scenario where physical disturbance results from trawling rather than the action of bioturbating macrofauna. Simulation results suggest that the effects of low levels of trawling disturbance will be similar to those of natural bioturbators but that high levels of trawling disturbance prevent the modelled system from reaching equilibrium due to large carbon fluxes between oxic and anoxic carbon compartments. The presence of macrobenthos in the natural disturbance scenario allowed sediment chemical storage and fluxes to reach equilibrium. This is because the macrobenthos are important carbon consumers in the system whose presence reduces the magnitude of available carbon fluxes. In soft sediment systems, where the level physical disturbance due to waves and tides is low, model results suggest that intensive trawling disturbance could cause large fluctuations in benthic chemical fluxes and storage

    Impact of resuspension of cohesive sediments at the Oyster Grounds (North Sea) on nutrient exchange across the sediment–water interface

    No full text
    Benthic-pelagic exchange processes are recognised as important nutrient sources in coastal areas, however, the relative impact of diffusion, resuspension and other processes such as bioturbation and bioirrigation are still relatively poorly understood. Experimental ship-based data are presented showing the effects of diffusion and resuspension on cohesive sediments at a temperate shelf location in the North Sea. Measurements of diffusive fluxes in both spring (1.76, 0.51, −0.91, 17.6 ÎŒmol/m2/h) and late summer (8.53, −0.03, −1.12, 35.0 ÎŒmol/m2/h) for nitrate, nitrite, phosphate and dissolved silicon respectively, provided comparisons for measured resuspension fluxes. Increases in diffusive fluxes of nitrate and dissolved silicon to the water column in late summer coincided with decreases in bottom water oxygen concentrations and increases in temperature. Resuspension experiments using a ship board annular flume and intact box core allowed simultaneous measurement of suspended particulate matter, water velocity and sampling of nutrients in the water column during a step wise increase in bed shear velocity. The resuspension of benthic fluff led to small but significant releases of phosphate and nitrate to the water column with chamber concentration increasing from 0.70–0.76 and 1.84–2.22 ÎŒmol/L respectively. Resuspension of the sediment bed increased water column concentrations of dissolved silicon by as much as 125% (7.10–15.9 ÎŒmol/L) and nitrate and phosphate concentrations by up to 67% (1.84–3.08 ÎŒmol/L) and 66% (0.70–1.15 ÎŒmol/L) respectively. Mass balance calculations indicate that processes such as microbial activity or adsorption/desorption other than simple release of pore water nutrients must occur during resuspension to account for the increase. This study shows that resuspension is potentially an important pathway for resupplying the water column with nutrients before and during phytoplankton blooms and should therefore be considered along with diffusive fluxes in future ecosystem models

    Spatial and temporal variability in nutrient concentrations in Liverpool Bay, a temperate latitude region of freshwater influence

    No full text
    This paper presents data for the temporal and spatial distribution of nutrients in Liverpool Bay between 2003 and 2009 and an analysis of inputs of nutrients from the major rivers. The spatial distribution of winter nutrient concentrations are controlled by the region of freshwater influence (ROFI) in Liverpool Bay through the mixing of riverine freshwater and Irish Sea water, with strong linear relationships between nutrient concentration and salinity between December and February. The location of highest spring and summer phytoplankton biomass reflects the nutrient distributions as controlled by the ROFI. Analysis of 7 years of data showed that the seasonal cycle of winter maximum nutrient concentrations in February and drawdown in April/May is a recurrent feature of this location, with the timing of the drawdown varying by several weeks between years. A comparison of observed nutrient concentrations in Liverpool Bay with those predicted from inputs from rivers has been presented. Nutrient concentrations in the rivers flowing into Liverpool Bay were highly variable and there was reasonable agreement between predicted freshwater nutrient concentrations using data from this study and riverine nutrient concentrations weighted on the basis of river flow, although the exact nature of mixing between the rivers could not be determined. Predicted Irish Sea nutrient concentrations in the winter were lower than those reported for the input waters of the North Atlantic, supporting findings from previous work that nitrogen is lost through denitrification in the Irish Sea
    corecore