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Bottom trawling causes physical disturbance to sediments particularly in shelf areas. The disturbance due to

trawling is most significant in deeper areas with softer sediments where levels of natural disturbance due to

wave and tidal action are low. In heavily fished areas, trawls may impact the same area of seabed more than

four times per year. A single pass of a beam trawl, the heaviest gear routinely used in shelf sea fisheries, can

kill 5–65% of the resident fauna and mix the top few cm of sediment. We expect that sediment community

function, carbon mineralisation and biogeochemical fluxes will be strongly affected by trawling activity because

the physical effects of trawling are equivalent to those of an extreme bioturbator, and yet, unlike bioturbating

macrofauna, trawling does not directly contribute to community metabolism. We used an existing box-model of

a generalised soft sediment system to examine the effects of trawling disturbance on carbon mineralisation and

chemical concentrations. We contrasted the effects of a natural scenario, where bioturbation is a function of

macrobenthos biomass, with an anthropogenic impact scenario where physical disturbance results from trawling

rather than the action of bioturbating macrofauna. Simulation results suggest that the effects of low levels of

trawling disturbance will be similar to those of natural bioturbators but that high levels of trawling disturbance

prevent the modelled system from reaching equilibrium due to large carbon fluxes between oxic and anoxic

carbon compartments. The presence of macrobenthos in the natural disturbance scenario allowed sediment

chemical storage and fluxes to reach equilibrium. This is because the macrobenthos are important carbon

consumers in the system whose presence reduces the magnitude of available carbon fluxes. In soft sediment

systems, where the level physical disturbance due to waves and tides is low, model results suggest that intensive

trawling disturbance could cause large fluctuations in benthic chemical fluxes and storage.

Introduction

Bottom trawling is a key source of physical disturbance in
shallow shelf seas, and trawling is well known to affect the
diversity, community structure, size composition and produc-
tion of benthic invertebrate communities.1–6 However, little is
known of the effects of trawling disturbance on processes in the
marine ecosystem, despite the expectation that sediment
community function, carbon mineralisation and biogeochem-
ical fluxes will be strongly affected by trawling disturbance.
Biogeochemical effects of trawling disturbance are expected
because (i) trawling reduces the abundance of bioturbating
macrofauna that play a key role in biogeochemical processes
and (ii) because the physical mixing by trawling may be likened
to bioturbation by macrofauna, and yet trawling, unlike the
macrofauna, does not directly contribute to community
metabolism.7

Amongst all the fishing gears used in the North Sea, beam
trawls have the greatest physical impact on sediments and their
fauna per unit distance towed;3 however, otter trawling gear
also impacts sediments by cutting furrows in the sediment with
the spreader doors.8 A matched pair of beam trawls, each of
4 m to 12 m width are towed by a single beam trawler. In the

north-east Atlantic, most beam trawlers fish with two 12 m
beam trawls for flatfish. Each trawl weighs about 8000 kg (in
air) and is towed at about 11 km h21.3 The beam trawls are
rigged with various ground gears, usually consisting of heavy
chain mats or ‘tickler’ chains, that are designed to exclude
rocks from the gear and to disturb and fluidise the upper layers
of sediment and drive flatfish from the seabed and into the net.3

The penetration of the chains into the sediment, and hence the
amount of physical disturbance caused by the beam trawl,
depends on the weight of the gear, towing speed and sediment
type. On soft muddy-sand bottoms, the gear will typically
penetrate to a depth of around 6 cm.3

Beam trawling effort is extremely patchy, and fishers have
favoured ‘tows’ which they trawl repeatedly while adjacent
areas may be virtually unfished. Small areas of the North Sea
are fished 5 or more times each year while others are virtually
unfished.9 There are significant reductions in the biomass of
large macrofauna in heavily trawled areas,10 because they
cannot sustain the mortality rates caused by trawls. Direct
mortalities of 5–65% have been recorded for larger invertebrate
species in the path of a beam trawl,11 and these equate to
annual fishing mortality rates of 5–39% in heavily trawled
areas.
The relative impacts of trawling disturbance on sediments

will depend on the relationship between trawling and natural
sediment mixing. In shallow turbid regions such as the southern
North Sea, wave and tidal actions lead to bulk sediment
disturbance and transport12 and the effects of trawling are
likely to be negligible. Moreover, the fauna living in these areas
are likely to be well adapted to continual disturbance and more
resilient to the effects of trawling.2,12 Conversely, in deeper
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areas with less natural disturbance, such as parts of the central
North Sea, trawling disturbance is likely to account for a
significant proportion of total disturbance. In areas with low
natural disturbance, the biogeochemical impacts of trawling
may be profound given that trawling kills macrobenthos and
mixes sediments. Fluxes of NO2

2 and NO3
2 from sediment to

the water column are a function of anaerobic carbon mineral-
isation coupled with aerobic oxidation of NH4

z.12 As these
processes are mediated by microbial metabolic pathways and
the bulk fluxes are altered by carbon mixing in sediments and
the oxygen state,14 trawling activities should affect sediment
biogeochemistry.
Soft sediment systems, such as those found in areas of low

natural disturbance, are tightly coupled such that the organism
biomass, carbon input chemical fluxes and storage are
integrally linked.15,16 Bioturbation by macrobenthos is a key
process for function and carbon mineralisation in the sediments
as it mixes organic carbon, allows non-biochemical mediated
oxidation of chemicals and oxygenates sediments.14 Bioturba-
tion is at times a key process which maintains the benthic
system in a dynamic steady state.16 As the large fauna in
sediments are usually the bioturbators, their presence in the
system may be integral to maintaining carbon mineralisation
and sediment fluxes which may be considered the summary
measure of ‘‘system function’’ and bioturbator loss from the
system may break the close coupling present in a sediment
system.
Trawling, by removing bioturbators from the system yet

acting as a strong physical mixing force itself, will affect how a
soft sediment system will mineralise carbon. The aim of the
present work is to examine how carbon storage and mineral-
isation might be affected by trawling activities in areas where
there are low levels of natural physical disturbance. These
would be typical of beam trawling grounds in the deeper areas
of the central North Sea, where mean sediment grain sizes are
0.05 mm or less. We examine two scenarios using a simple box-
model of a soft sediment system: (1) a natural system with
moderate macrofauna biomass; (2) a system with depressed
macrofauna biomass and yet very intense anthropogenic
mixing. These scenarios provide preliminary insights into the
ways in which trawling disturbance can affect some ecosystem
processes.

Methods

The model

To assess the potential impacts of trawling on carbon
mineralisation in southern North Sea sediments we ran
simulations using a previously described model of a generalised
soft sediment system.16 This simulation model includes three
bacterial compartments, meiofauna, macrofauna, oxic carbon,
anoxic carbon and sulfide (Fig. 1). The model conserves carbon
and carbon input and temperature are the external conditions
applied to the model.
Each of the living compartments in the model grows in

proportion to its consumption of carbon from various sources
shown in Fig. 1. Predation, that is a predator eating a living
prey and not a non-living carbon source, is modelled with a
Weigert type of functional response17 but modified such that
intraspecific competition is handled using a carrying capacity
term. Though the carrying capacity term can create problems
with the dynamics of a model it was thought to be suitable for
the steady state simulations presented here. Furthermore, this
is a useful formulation for holding biomass of a particular
compartment at a defined level without modifying model
structure. Using the carrying capacity term in this way allows
comparison between scenarios that have different fixed
biomass levels. This is an important consideration for
both types of scenario examined in this study. Bacterial

consumption of carbon is modelled as simply a basic linear
numerical response modified by a carrying capacity term where
the carrying capacity is set as the amount of carbon in the
utilised compartment.
The model contains two opposing positive feedbacks which

have previously been shown to be important for benthic
community structure and flux rates in the model (Fig. 1). The
first positive feedback is where sulfide release is increases as a
function of bioturbation; hence, increases the rate of carbon
flux into the oxic compartment from the anoxic carbon
compartment. This is the equivalent of oxygenating the
sediments and making more carbon available to the oxic
fauna. The bioturbation effect is proportional to the biomass of
macrofauna in the sediments by eqn. (1):

BT ~ 2 log10(MacrofaunaBiomass z 1) (1)

where macrofauna biomass is measured in mmol (C) m22. BT
is a multiplier of the basic flux rates. Generally it varies by a
factor v6.5 with most levels of macrofauna biomass.
The opposing positive feedback is with sulfide production by

anaerobic bacteria and the toxicity of this sulfide to metazoans.
Anaerobic bacteria consume anoxic carbon and produce toxic
sulfides in proportion to their carbon consumption. The stored
sulfides then produce a toxic effect which increases the
mortality rate of aerobic organisms as well as increases the
rate of carbon flux from the oxic to the anoxic compartment.
The sulfide toxicity is modelled as a function of stored sulfides
by eqn. (2):

ST~ 2 log10(StoredSulfide z 1) (2)

where sulfide storage is measured in mmol (S) m22.
The key feature of the model which makes it useful for the

current analysis is the bioturbation function. Bioturbation in
the model has the direct effect of moving carbon between
anoxic and oxic compartments as well as oxidising stored
sulfides. This bioturbation factor was modified to simulate the
mixing effects of trawling by setting the multiplier at fixed
levels. Unfortunately, the multiplier cannot be directly related
to observed levels of trawling disturbance because we do not
know the effects of a single trawl pass on the movement of

Fig. 1 Diagram of state variables and flows in a model of a soft
sediment ecosystem. Thick line arrows are trophic carbon flows; thin
line arrows are information flows indicating the influence of the state of
a variable on a process, the z and 2 indicate the direction of the
influence; arrows of intermediate line thickness are flows of carbon and
sulfide. A detailed description of the model can be found in Duplisea.16

2 Geochem. Trans., 2001, 14, 1–6
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carbon between anoxic and oxic compartments or on the
oxidation of stored sulfides. Such data could, however, be
collected in an experimental study.
The model is described in greater detail elsewhere.16

Simulations

Scenario 1 ‘‘natural’’: bioturbation as a function of macro-
fauna biomass. For the first set of simulations macrofauna
biomass was set at a fixed level by altering the carrying capacity
for that compartment. For this type of simulation, the direct
mixing effect of the trawling itself was not considered but was
allowed to affect the benthic community only by modifying
macrofauna biomass, hence following the relationship of
eqn. (1); therefore macrofauna participated in all benthic
processes in proportion to their biomass and were the sole
sources of bioturbation. This type of scenario is unlikely in
reality as benthic trawling kills macrofauna while at the same
time mixing sediments and releasing stored sulfide. The
scenario is necessary, however, as it provides a baseline
situation for a community with a naturally low biomass of
macrofauna.

Scenario 2 ‘‘trawling’’: low macrofauna biomass and intense
physical mixing caused by trawling. The second set of simu-
lations is probably more realistic as the macrofauna biomass in
depressed (about 70 mmol (C) m22) yet the bioturbation-like
mixing increases as a function of the trawling effort. The factor
BT was therefore set at a constant level and run to steady state.
For the present simulations, BT was varied between 1 and 20,
hence the physical mixing effects of trawling were allowed to
increase base rates by a factor of 20. In this situation macro-
fauna has little to do with the modelled sediment fluxes as their
biomass is kept so low.
All simulations were run to steady state. The results

presented here are the steady state solutions for fixed levels
of macrofauna for the natural scenario and fixed levels of
bioturbation-like trawling and depressed macrofauna biomass
(of less than 70 mmol (C) m22) for the trawling scenario.

Results

Macrobenthic biomass in the Silver Pit area of the central
North Sea has been reduced by trawling activities (Fig. 2). This
applies in other areas of the North Sea and can be expected
generally.3,10 This analysis of the relationship between
macrobenthic biomass and trawling activity suggests that

macrobenthic biomass can be reduced by an order of
magnitude due to trawling activity.

Scenario 1 ‘‘natural’’: bioturbation as a function of macrofauna
biomass

The first set of scenarios examines how a generalised soft
bottom benthic system mineralises carbon in relation to the
macrobenthic biomass where macrobenthos are the bioturba-
tors in the system. This set of scenarios show that as
macrobenthic biomass increases from 0 to the maximum
observed in the Silver Pit area of the central North Sea (Fig. 2),
the total CO2 production of the system decreases from 46 to
37 mmol m22 d21 (Fig. 3). The proportion of carbon mineral-
isation (CO2 production) due to direct aerobic processes
increased from 34 to 85% with an increase in macrofauna
biomass from 0 to 1300 mmol (C) m22.
The appearance of bioturbating macrofauna immediately

decreases the amount of carbon in the oxic carbon compart-
ment and shifts this carbon to the anoxic compartment (Fig. 4).
Concomitant with the shift in carbon, the amount of sulfide
stored decreases as the bioturbators facilitate sulfide oxidation.
Further increases in macrofauna biomass leads to declines in
anoxic carbon, oxic carbon and sulfide. Anoxic carbon,
however, declines the most as this is the prime source of the
organic carbon fuelling the increase in macrobenthic biomass.

Scenario 2 ‘‘trawling’’: low macrofauna biomass and intense
physical mixing caused by trawling

Steady state CO2 production remained constant when the
trawling-induced physical mixing multiplier (PMM) varied
from 0 to 10 (Fig. 5). The proportion of carbon mineralisation
accounted for by aerobic processes increased from 0.37 to 0.54
over the same range of PMM. Between PMM values of 10 and

Fig. 2 Macroinfauna biomass in the Silver Pit area of the central North
Sea in relation to beam trawling effort. Effort is expressed as the
average number of times each year any area of the bottom is swept by
beam trawling gear. Macrofauna biomass in mmol (C) m22 has been
converted from g (wet weight) m22 by multiplying by factor of 10.
Data from Jennings et al.10 Preliminary analyses of these data showed
that the decline in biomass was due to trawling rather than
environmental factors such as depth, mean sediment diameter and
sorting coefficient.19

Fig. 3 Model simulation results showing steady state total benthic CO2

production and the proportion of that production due to direct aerobic
processes as a function of macrofauna biomass. Macrofauna are the
sole bioturbators/bioirrigators in the model.

Fig. 4 Model simulation results showing steady state concentrations of
sulfide, oxic organic carbon and anoxic organic carbon as a function of
macrofauna biomass. Macrofauna are the sole bioturbators/bioirriga-
tors in the model.

Geochem. Trans., 2001, 14, 1–6 3
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15, the mixing of carbon between compartments increased
rapidly by about 30% above previous levels while the aerobic
proportion of this production decreased slightly. After the
PMM reached 16 the model became unstable and multiple
solutions were found.
Sulfide storage in the sediment decreased greatly with a small

initial increase in PMM (Fig. 6). The sulfide concentration
decreased to a more constant and low level after the PMM
value reached 10. Both carbon compartments remained at
fairly constant levels until a PMM value of 10 where the
exchange between compartments moved more carbon into the
oxic compartment out of the anoxic compartment. Like the
CO2 production the biomass of both compartments increased
and the sulfide also increased to some degree. These increases
were, however, unstable and at PMM values greater than 15
the model had multiple solutions.
To ascertain whether the modelled rates of CO2 produc-

tion were realistic, the predicted rates were compared
stoichiometrically with observed rates of total N flux. These
measured rates were derived from summing separate observa-
tions of nitrate and ammonium flux at a site near the Silver Pit
region of the North Sea.20

The mean total N flux was ca. 7–33 mmol m22 h21 and the
upper range converts to 0.8 mmol N m22 d21. Given that the
accepted N :C molar ratio in organic matter is 0.16,18 the
upper value equates to CO2 production of 5.5 mmol (N)
m22 d21 compared to a CO2 production range of 30–
50 mmol (C) m22 d21 predicted by the model. The estimates
of CO2 production derived from measured fluxes are somewhat
lower than the model, but experimentally uncharacterised
sediment processes such as coupled denitrification or microbial

utilisation can reduce the measured flux rates of NH4 and NO3

by a factor of 10.21 Similar model comparisons of trawling
impact scenarios could not be performed with this observa-
tional data but such work is planned in the near future and is
designed to feed into modelling approaches.

Discussion

Our preliminary assessment of the effects of trawling dis-
turbance on carbon mineralisation and chemical concentra-
tions in a soft sediment system implies that trawling can have
profound effects on functional processes in benthic systems.
The model has been parameterised for a soft sediment system,
which is typical of beam trawled areas in the deeper parts of the
central North Sea. It is unlikely, however, that the model is
applicable to the coarser sediments in shallow regions of the
southern North Sea, where wave and tidal action are the main
sources of physical disturbance.
Juxtaposing the natural scenario with the trawling scenario,

the model predicts that physical mixing caused by macrofauna
bioturbation will create quite different steady state benthic
processes from physical mixing caused by trawling activities.
The greatest of these differences is the instability in the
modelled carbon and sulfide concentrations as well as carbon
mineralisation rates in the trawling scenario. The trawling
scenario shows large and rapid fluctuations in carbon and
carbon mineralisation between oxic and anoxic compartments
and carbon mineralisation pathways, respectively. In the
natural scenario, macrofauna biomass shows considerable
stability and there is explainable collective behaviour such as
decreases in the anoxic carbon compartment which fuel
increases in macrobenthic biomass. The contrast of the two
scenarios suggests that the presence of a large macrobenthos
biomass with slower rates needs to accompany increases in
physical mixing of the sediments to prevent instabilities. This
corroborates work showing that high variability in benthic
biomass and rates (i.e. spatial instability which may be reflected
in the present model through multiple solutions) reflects a
disturbed community.22 It is likely that in an undisturbed
situation slower growing macrofauna sequester a considerable
amount of organic carbon that is unavailable for microbial
processes. Therefore, shifts in carbon between availability and
unavailability for various microbial processes cannot be large.
When macrofauna are killed in the system through trawling,
and physical mixing is very high, the model is unstable because
of drastic shifts in carbon between available and unavailable to
various microbial processes. As the bacterial turnover times are
very high, their population biomass and community fluxes
respond rapidly as well. Experimental work presented in this
symposium23 shows that a high level of physical mixing can
stimulate anaerobic bacterial processes which is counter to
the intuitive explanation of physical mixing as an aerobic
favourable process.
The present model is carbon limited only and other

molecules exist in stoichiometric relation to carbon and the
relevant reaction pathway. In reality though, there is likely to
be limitation of various molecules especially nitrogenous
species. Modelling of nitrogen in the benthos would likely
limit some of these pathways and may reduce the instability of
the model in the trawling scenario. If, however, ammonium
(NH4

z) were nitrified (NO2
2 and NO3

2) and released to the
overlying water at a higher rate due to trawling, which is a
known result of bioturbation-like mixing,14 phytoplankton
production in surface waters could be enhanced by trawling
activity.
Although very little work24–26 has been done on trawling

impacts on sediment function (i.e. rate of nutrient cycling,
processes etc.) the immediate potential of nutrient release
derived from recycling of benthic mortalities and sediment

Fig. 6 Model simulation results showing steady state organic carbon
and sulfide concentrations as a function of physical mixing (PMM)
hypothetically caused by trawling activity. Macrofauna are kept at a
level of about 70 mmol (C) m22 for all simulations. At PMM levels
greater than 15, the model has multiple solutions.

Fig. 5 Model simulation results showing steady state total benthic CO2

production and the proportion of that production due to direct aerobic
processes as a function of physical mixing (PMM) hypothetically
caused by trawling activity. Macrofauna are kept at a level of about
70 mmol (C) m22 for all simulations. At PMM levels greater than 15,
the model has multiple solutions.

4 Geochem. Trans., 2001, 14, 1–6
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resuspension are clear.27 For example, given that the
observed macrofauna biomass ranges between 600 and
1000 mmol (C) m22 which characterises the Silver Pit area,10

we can calculate the potential total N release from trawling
induced mortality. Using direct mortality of 5–65%11 and
assuming that 50% of this is consumed by scavengers, mortality
of macrofauna by a trawl could potentially produce an initial
pulse of 15–423 mmol (C) m22 after the trawl passage. This
converts to a release of between 2.4 and 68 mmol (N) m22

derived from recycling of this material. An N pulse of this
magnitude over a large area could affect surface production.
Clearly changes in macrofauna biomass with prolonged
trawling or changing intensities and recycling rates/sediment
processes will alter the actual flux speciation and rates.
In addition to N pulses from direct organism mortality other

biogeochemical fluxes will change as a result of sediment
resuspension. Preliminary empirical work28 in the Botney Cut
region to the south-east of the Silver Pit, indicates that
resuspension events in sediments impacted by trawling lead to
larger fluxes of phosphate, silicate and nitrogenous species
compared with untrawled sediments (Fig. 7). Such results
suggests that the storage and probably recycling times of these
compounds is decreased in trawled sediments.
We calculated a potential impact of trawling induced flux

rate multiplier using flux rates from sediment resuspension
experiments (Fig. 7) and typical North Sea beam trawler tow
rates29 and gear penetration depth.3 We estimated that a
trawler will impact about 0.27 km2 h21 to a depth of ca. 6 cm.
Assuming that all this sediment is resuspended during the
trawler passage and using typical porosity (0.65) and
sediment specific gravity (2.65 g cm23) estimated nutrient
releases due to trawling are: 234 ¡ 128 mmol m22 h21 NO3,

457¡ 117 mmol m22 h21 NH4, and 668 ¡ 18 mmol m22 h21

silicate. These calculations indicate that a single trawl passage
could potentially produce non-equilibrium pulsed releases of
nitrate, ammonium and silicate that are 20, 45 and 26 times
greater than the ambient undisturbed sediment nutrient flux,
respectively. This will of course vary with sediment type and in
the long term will be a function of the total nutrient status in
the system, but it does indicate a change in the benthic system
function. Nutrient releases to overlying water of this magnitude
could affect surface production.27

It has been suggested that trawling activities ‘‘farm the sea’’.
That is, trawling removes large long-lived species that are
unavailable as food for commercially important benthic fish
consequently freeing up resource for benthos that are better
food sources for fish.10 The current study suggests that much of
this released carbon could simply fuel microbial pathways
rather than the metazoan fish food pathways, in accordance
with the observation that almost all benthic metazoan
production is reduced by trawling disturbance.10

The model describes the local effects of trawling and it is
interesting to consider the cumulative impact of these effects.
Clearly, trawling effort is very patchy,9 and while some areas of
seabed are trawled >4 times per year, others are virtually
unfished. Indeed, for the North Sea as a whole, at the scale of
the ICES rectangle (211 rectangles of 0.5u latitude by 1u
longitude: area of rectangle 3720 km2 at 53uN), 50% of
rectangles are beam trawled for less than 2000 h a21.29 Since
a typical beam trawler tows two 12 m (width) beams at 6 knots
(11.1 km h21), the trawler will impact about 535 km2 of
substratum in 2000 h. Thus, in rectangles subject to 2000 h
beam trawling a21, and with a truly homogeneous effort
distribution in the rectangle, it would take at least 7 years to
trawl the entire rectangle once. If we are to assess the
cumulative impacts of trawling on biogeochemical processes
in the North Sea, then future models of the effects of trawling
disturbance on carbon mineralisation and chemical concentra-
tions will need to incorporate explicit links between trawling
frequency on different sediment types and the physical mixing
multiplier used in our model (from experimental data) and to
incorporate a spatial component that accounts for patchiness
in trawling disturbance.
There have been few attempts to assess the significance of

fishing activities on functional processes in the marine eco-
system. Our model, implies that trawling could strongly affect
benthic biogeochemical fluxes which in turn may affect the
carbon flow throughout the a marine ecosystem. The present
modelling study, though speculative, suggests that trawling in
the benthos could enhance microbial carbon mineralisation
pathways at the expense of metazoan faunal biomass and
intense trawling could create considerable instability in benthic
function. This contrasts a modelled natural community which
shows high stability and explicable collective community
behaviours.
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