376 research outputs found
Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans
Very little is known about the growth and mutation rates of Mycobacterium tuberculosis during latent infection in humans. However, studies in rhesus macaques have suggested that latent infections have mutation rates that are higher than that observed during active tuberculosis disease. Elevated mutation rates are presumed risk factors for the development of drug resistance. Therefore, the investigation of mutation rates during human latency is of high importance. We performed whole genome mutation analysis of M. tuberculosis isolates from a multi-decade tuberculosis outbreak of the New Zealand Rangipo strain. We used epidemiological and phylogenetic analysis to identify four cases of tuberculosis acquired from the same index case. Two of the tuberculosis cases occurred within two years of exposure and were classified as recently transmitted tuberculosis. Two other cases occurred more than 20 years after exposure and were classified as reactivation of latent M. tuberculosis infections. Mutation rates were compared between the two recently transmitted pairs versus the two latent pairs. Mean mutation rates assuming 20 hour generation times were 5.5X10⁻¹⁰ mutations/bp/generation for recently transmitted tuberculosis and 7.3X10⁻¹¹ mutations/bp/generation for latent tuberculosis. Generation time versus mutation rate curves were also significantly higher for recently transmitted tuberculosis across all replication rates (p = 0.006). Assuming identical replication and mutation rates among all isolates in the final two years before disease reactivation, the u20hr mutation rate attributable to the remaining latent period was 1.6×10⁻¹¹ mutations/bp/generation, or approximately 30 fold less than that calculated during the two years immediately before disease. Mutations attributable to oxidative stress as might be caused by bacterial exposure to the host immune system were not increased in latent infections. In conclusion, we did not find any evidence to suggest elevated mutation rates during tuberculosis latency in humans, unlike the situation in rhesus macaques
The infectiousness of tuberculosis patients coinfected with HIV
The current understanding of airborne tuberculosis (TB) transmission is based on classic 1950s studies in which guinea pigs were exposed to air from a tuberculosis ward. Recently we recreated this model in Lima, Peru, and in this paper we report the use of molecular fingerprinting to investigate patient infectiousness in the current era of HIV infection and multidrug-resistant (MDR) TB
Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission
Background Institutional tuberculosis (TB) transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV) lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air. Methods and Findings For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304) of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303) by ionizers, and to 9.5% (29/307) by UV lights (both p < 0.0001 compared with the control group). TB disease was confirmed in 8.6% (26/304) of control group animals, and this was reduced to 4.3% (13/303) by ionizers, and to 3.6% (11/307) by UV lights (both p < 0.03 compared with the control group). Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001) and by UV lights (log-rank 46; p < 0.0001). Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055) and by UV lights (log-rank 5.4; p = 0.02). An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of TB infection and 51% of TB disease, and that UV lights prevented 70% of TB infection and 54% of TB disease. In all analysis strategies, UV lights tended to be more protective than ionizers. Conclusions Upper-room UV lights and negative air ionization each prevented most airborne TB transmission detectable by guinea pig air sampling. Provided there is adequate mixing of room air, upper-room UV light is an effective, low-cost intervention for use in TB infection control in high-risk clinical settings
Highly Sensitive Detection of Staphylococcus aureus Directly from Patient Blood
Background: Rapid detection of bloodstream infections (BSIs) can be lifesaving. We investigated the sample processing and assay parameters necessary for highly-sensitive detection of bloodstream bacteria, using Staphylococcus aureus as a model pathogen and an automated fluidic sample processing – polymerase chain reaction (PCR) platform as a model diagnostic system. Methodology/Principal Findings: We compared a short 128 bp amplicon hemi-nested PCR and a relatively shorter 79 bp amplicon nested PCR targeting the S. aureus nuc and sodA genes, respectively. The sodA nested assay showed an enhanced limit of detection (LOD) of 5 genomic copies per reaction or 10 colony forming units (CFU) per ml blood over 50 copies per reaction or 50 CFU/ml for the nuc assay. To establish optimal extraction protocols, we investigated the relative abundance of the bacteria in different components of the blood (white blood cells (WBCs), plasma or whole blood), using the above assays. The blood samples were obtained from the patients who were culture positive for S. aureus. Whole blood resulted in maximum PCR positives with sodA assay (90 % positive) as opposed to cell-associated bacteria (in WBCs) (71 % samples positive) or free bacterial DNA in plasma (62.5 % samples positive). Both the assays were further tested for direct detection of S. aureus in patient whole blood samples that were contemporaneous culture positive. S. aureus was detected in 40/45 of culture-positive patients (sensitivity 89%, 95 % CI 0.75–0.96) and 0/59 negative controls with the sodA assay (specificit
Transmission phenotype of mycobacterium tuberculosis strains is mechanistically linked to induction of distinct pulmonary pathology
In a study of household contacts (HHC), households were categorized into High (HT) and Low (LT) transmission groups based on the proportion of HHC with a positive tuberculin skin test. The Mycobacterium tuberculosis (Mtb) strains from HT and LT index cases of the households were designated Mtb-HT and Mtb-LT, respectively. We found that C3HeB/FeJ mice infected with Mtb-LT strains exhibited significantly higher bacterial burden compared to Mtb-HT strains and also developed diffused inflammatory lung pathology. In stark contrast, a significant number of mice infected with Mtb-HT strains developed caseating granulomas, a lesion type with high potential to cavitate. None of the Mtb-HT infected animals developed diffused inflammatory lung pathology. A link was observed between increased in vitro replication of Mtb-LT strains and their ability to induce significantly high lipid droplet formation in macrophages. These results support that distinct early interactions of Mtb-HT and Mtb-LT strains with macrophages and subsequent differential trajectories in pathological disease may be the mechanism underlying their transmission potential.publishersversionpublishe
Transcriptional Regulation of Multi-Drug Tolerance and Antibiotic-Induced Responses by the Histone-Like Protein Lsr2 in M. tuberculosis
Multi-drug tolerance is a key phenotypic property that complicates the sterilization of mammals infected with Mycobacterium tuberculosis. Previous studies have established that iniBAC, an operon that confers multi-drug tolerance to M. bovis BCG through an associated pump-like activity, is induced by the antibiotics isoniazid (INH) and ethambutol (EMB). An improved understanding of the functional role of antibiotic-induced genes and the regulation of drug tolerance may be gained by studying the factors that regulate antibiotic-mediated gene expression. An M. smegmatis strain containing a lacZ gene fused to the promoter of M. tuberculosis iniBAC (PiniBAC) was subjected to transposon mutagenesis. Mutants with constitutive expression and increased EMB-mediated induction of PiniBAC::lacZ mapped to the lsr2 gene (MSMEG6065), a small basic protein of unknown function that is highly conserved among mycobacteria. These mutants had a marked change in colony morphology and generated a new polar lipid. Complementation with multi-copy M. tuberculosis lsr2 (Rv3597c) returned PiniBAC expression to baseline, reversed the observed morphological and lipid changes, and repressed PiniBAC induction by EMB to below that of the control M. smegmatis strain. Microarray analysis of an lsr2 knockout confirmed upregulation of M. smegmatis iniA and demonstrated upregulation of genes involved in cell wall and metabolic functions. Fully 121 of 584 genes induced by EMB treatment in wild-type M. smegmatis were upregulated (“hyperinduced”) to even higher levels by EMB in the M. smegmatis lsr2 knockout. The most highly upregulated genes and gene clusters had adenine-thymine (AT)–rich 5-prime untranslated regions. In M. tuberculosis, overexpression of lsr2 repressed INH-mediated induction of all three iniBAC genes, as well as another annotated pump, efpA. The low molecular weight and basic properties of Lsr2 (pI 10.69) suggested that it was a histone-like protein, although it did not exhibit sequence homology with other proteins in this class. Consistent with other histone-like proteins, Lsr2 bound DNA with a preference for circular DNA, forming large oligomers, inhibited DNase I activity, and introduced a modest degree of supercoiling into relaxed plasmids. Lsr2 also inhibited in vitro transcription and topoisomerase I activity. Lsr2 represents a novel class of histone-like proteins that inhibit a wide variety of DNA-interacting enzymes. Lsr2 appears to regulate several important pathways in mycobacteria by preferentially binding to AT-rich sequences, including genes induced by antibiotics and those associated with inducible multi-drug tolerance. An improved understanding of the role of lsr2 may provide important insights into the mechanisms of action of antibiotics and the way that mycobacteria adapt to stresses such as antibiotic treatment
Mycobacterium tuberculosis progresses through two phases of latent infection in humans
Little is known about the physiology of latent Mycobacterium tuberculosis infection. We studied the mutational rates of 24 index tuberculosis (TB) cases and their latently infected household contacts who developed active TB up to 5.25 years later, as an indication of bacterial physiological state and possible generation times during latent TB infection in humans. Here we report that the rate of new mutations in the M. tuberculosis genome decline dramatically after two years of latent infection (two-sided p < 0.001, assuming an 18 h generation time equal to log phase M. tuberculosis, with latency period modeled as a continuous variable). Alternatively, assuming a fixed mutation rate, the generation time increases over the latency duration. Mutations indicative of oxidative stress do not increase with increasing latency duration suggesting a lack of host or bacterial derived mutational stress. These results suggest that M. tuberculosis enters a quiescent state during latency, decreasing the risk for mutational drug resistance and increasing generation time, but potentially increasing bacterial tolerance to drugs that target actively growing bacteria.publishersversionpublishe
Novel and optimized diagnostics for pediatric TB in endemic countries: NOD-pedFEND study protocol
Background: Pediatric tuberculosis is a major global public health challenge, with reliable diagnosis being a main obstacle to identifying and treating affected children. New and improved diagnostics, ideally on non-sputum samples, are urgently required, especially in the most vulnerable group of children under five years of age. Studies to date have been limited by small sample sizes and few bacteriologically-confirmed cases. Here, we describe the study protocol of the NIH-funded NOD-pedFEND study, which will be one of the largest diagnostic studies to date of children at greatest risk of tuberculosis. Methods: In this prospective observational cohort study, we aim to evaluate existing and novel diagnostic assays, including pathogen- and host-based tests and combinations of tests. A consecutive cohort of children under five years of age with signs and symptoms of tuberculosis is enrolled in Uganda and Peru. All children undergo an extensive baseline workup with signs- and symptoms recording, microbiological reference tests, chest X-ray and tuberculin skin test for rigorous classification according to internationally recognized microbiological, composite reference and strict standards. An array of samples is collected for investigational tests. Follow-up visits are conducted at 2 weeks, 2 months and 6 months. A small cohort of healthy controls is enrolled to evaluate the specificity of selected diagnostics. The study has been approved by the relevant institutional review boards. Discussion: With this large cohort study of children under five years of age, we aim to make an important contribution to the evaluation of new diagnostics for pediatric tuberculosis. By establishing a comprehensive biorepository, the study will also enable the assessment of novel tests as they become available during and after the study
Author Correction: Integrating standardized whole genome sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance knowledgebase.
An amendment to this paper has been published and can be accessed via a link at the top of the paper
- …
