106 research outputs found

    Study protocol for THINK : a multinational open-label phase I study to assess the safety and clinical activity of multiple administrations of NKR-2 in patients with different metastatic tumour types

    Get PDF
    Introduction: NKR-2 are autologous T cells genetically modified to express a chimeric antigen receptor (CAR) comprising a fusion of the natural killer group 2D (NKG2D) receptor with the CD3 zeta signalling domain, which associates with the adaptor molecule DNAX-activating protein of 10 kDa (DAP10) to provide co-stimulatory signal upon ligand binding. NKG2D binds eight different ligands expressed on the cell surface of many tumour cells and which are normally absent on non-neoplastic cells. In preclinical studies, NKR-2 demonstrated long-term antitumour activity towards a breadth of tumour indications, with maximum efficacy observed after multiple NKR-2 administrations. Importantly, NKR-2 targeted tumour cells and tumour neovasculature and the local tumour immunosuppressive microenvironment and this mechanism of action of NKR-2 was established in the absence of preconditioning. Methods and analysis: This open-label phase I study will assess the safety and clinical activity of NKR-2 treatment administered three times, with a 2-week interval between each administration in different tumour types. The study will contain two consecutive segments: a dose escalation phase followed by an expansion phase. The dose escalation study involves two arms, one in solid tumours (five specific indications) and one in haematological tumours (two specific indications) and will include three dose levels in each arm: 3x10(8), 1x10(9) and 3x10(9) NKR-2 per injection. On the identification of the recommended dose in the first segment, based on dose-limiting toxicity occurrences, the study will expand to seven different cohorts examining the seven different tumour types separately. Clinical responses will be determined according to standard Response Evaluation Criteria In Solid Tumors (RECIST) criteria for solid tumours or international working group response criteria in haematological tumours. Ethics approval and dissemination: Ethical approval has been obtained at all sites. Written informed consent will be taken from all participants. The results of this study will be disseminated through presentation at international scientific conferences and reported in peer-reviewed scientific journals

    TP53 and MDM2 single nucleotide polymorphisms influence survival in non-del(5q) myelodysplastic syndromes

    Get PDF
    Abstract:P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to -2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome

    SF3B1-mutant MDS as a distinct disease subtype:a proposal from the International Working Group for the Prognosis of MDS

    Get PDF
    The 2016 revision of the World Health Organization classification of tumors of hematopoietic and lymphoid tissues is characterized by a closer integration of morphology and molecular genetics. Notwithstanding, the myelodysplastic syndrome (MDS) with isolated del(5q) remains so far the only MDS subtype defined by a genetic abnormality. Approximately half of MDS patients carry somatic mutations in spliceosome genes, with SF3B1 being the most commonly mutated one. SF3B1 mutation identifies a condition characterized by ring sideroblasts (RS), ineffective erythropoiesis, and indolent clinical course. A large body of evidence supports recognition of SF3B1-mutant MDSas a distinct nosologic entity. To further validate this notion, we interrogated the data set of the International Working Group for the Prognosis of MDS (IWG-PM). Based on the findings of our analyses, we propose the following diagnostic criteria for SF3B1-mutant MDS: (1) cytopenia as defined by standard hematologic values, (2) somatic SF3B1 mutation, (3) morphologic dysplasia (with or without RS), and (4) bone marrow blasts <5% and peripheral blood blasts <1%. Selected concomitant genetic lesions represent exclusion criteria for the proposed entity. In patients with clonal cytopenia of undetermined significance, SF3B1 mutation is almost invariably associated with subsequent development of overtMDS with RS, suggesting that this genetic lesion might provide presumptive evidence of MDS in the setting of persistent unexplained cytopenia. Diagnosis of SF3B1-mutant MDS has considerable clinical implications in terms of risk stratification and therapeutic decision making. In fact, this condition has a relatively good prognosis and may respond to luspatercept with abolishment of the transfusion requirement. (Blood. 2020;136(2):157-170)

    TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups

    Get PDF
    Risk stratification is critical in the care of patients with myelodysplastic syndromes (MDS). Approximately 10% have a complex karyotype (CK), defined as more than two cytogenetic abnormalities, which is a highly adverse prognostic marker. However, CK-MDS can carry a wide range of chromosomal abnormalities and somatic mutations. To refine risk stratification of CK-MDS patients, we examined data from 359 CK-MDS patients shared by the International Working Group for MDS. Mutations were underrepresented with the exception of TP53 mutations, identified in 55% of patients. TP53 mutated patients had even fewer co-mutated genes but were enriched for the del(5q) chromosomal abnormality (p 10%), abnormal 3q, abnormal 9, and monosomy 7 as having the greatest survival risk. The poor risk associated with CK-MDS is driven by its association with prognostically adverse TP53 mutations and can be refined by considering clinical and karyotype features

    A Machine Learning Model of Response to Hypomethylating Agents in Myelodysplastic Syndromes

    Get PDF
    Hypomethylating agents (HMA) prolong survival and improve cytopenias in individuals with higher-risk myelodysplastic syndrome (MDS). Only 30-40% of patients, however, respond to HMAs, and responses may not occur for more than 6 months after HMA initiation. We developed a model to more rapidly assess HMA response by analyzing early changes in patients’ blood counts. Three institutions’ data were used to develop a model that assessed patients’ response to therapy 90 days after the initiation using serial blood counts. The model was developed with a training cohort of 424 patients from2 institutions and validated on an independent cohort of 90 patients. The final model achieved an area under the receiver operating characteristic curve (AUROC) of 0.79 in the train/test group and 0.84 in the validation group. The model provides cohort-wide and individual- level explanations for model predictions, and model certainty can be interrogated to gauge the reliability of a given prediction

    Integrating mutation variant allele frequency into clinical practice in myeloid malignancies

    Get PDF
    Hematologic myeloid neoplasms represent a heterogeneous group of disorders with defined clinical and pathologic characteristics. However, intensive investigation into the genetic abnormalities of these diseases has not only significantly advanced our understanding, but also revolutionized our diagnostic and prognostic capabilities. Moreover, more recent discovery on the impact of clonal burden has highlighted the critical and dynamic role of clonal evolution over time, which is integrally linked to a patient’s clinical trajectory. This review will highlight the evidence supporting the incorporation of allelic burden of somatic mutations into clinical practice for the diagnosis and prognosis of myeloid neoplasms. Keywords: Acute myeloid leukemia, FLT3, Myelodysplastic syndrome, Next-generation sequencing, TP53, Variant allele frequenc
    • …
    corecore