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Abstract
Risk stratification is critical in the care of patients with myelodysplastic syndromes (MDS). Approximately 10% have a
complex karyotype (CK), defined as more than two cytogenetic abnormalities, which is a highly adverse prognostic marker.
However, CK-MDS can carry a wide range of chromosomal abnormalities and somatic mutations. To refine risk
stratification of CK-MDS patients, we examined data from 359 CK-MDS patients shared by the International Working
Group for MDS. Mutations were underrepresented with the exception of TP53 mutations, identified in 55% of patients. TP53
mutated patients had even fewer co-mutated genes but were enriched for the del(5q) chromosomal abnormality (p < 0.005),
monosomal karyotype (p < 0.001), and high complexity, defined as more than 4 cytogenetic abnormalities (p < 0.001).
Monosomal karyotype, high complexity, and TP53 mutation were individually associated with shorter overall survival, but
monosomal status was not significant in a multivariable model. Multivariable survival modeling identified severe anemia
(hemoglobin < 8.0 g/dL), NRAS mutation, SF3B1 mutation, TP53 mutation, elevated blast percentage (>10%), abnormal 3q,
abnormal 9, and monosomy 7 as having the greatest survival risk. The poor risk associated with CK-MDS is driven by its
association with prognostically adverse TP53 mutations and can be refined by considering clinical and karyotype features.

Introduction

Risk stratification is essential in the clinical care of patients
with myelodysplastic syndromes (MDS). The predicted
prognosis helps physicians select when and how to treat and
sets expectations for patients and families. Recurrent

cytogenetic abnormalities are powerful predictors of prog-
nosis in MDS and are included in several prognostic scoring
systems used in clinical practice [1]. Individual abnormalities
can have a wide range of prognostic associations when pre-
sent in isolation. For example, deletion of chromosome 5q is
favorable while loss of chromosome 7 is adverse [2]. In
contrast, the presence of three or more chromosomal
abnormalities is always considered adverse, regardless of
which lesions are present [3, 4]. Prognostic models such as
the Revised International Prognostic Scoring System (IPSS-
R) assign substantial risk to the 10% of MDS patients with a
complex karyotype (CK), defined as three or more somatic
chromosomal abnormalities present in a single clone. The
IPSS-R considers patients with exactly three abnormalities to
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have ‘Poor’ cytogenetic risk, while those with four or more
abnormalities have ‘Very Poor’ cytogenetic risk, the highest
possible risk category, with a score that exceeds that assigned
to bone marrow blasts >10% [2, 5]. In fact, the presence of
CK excludes most MDS patients from having ‘lower risk’
MDS, as defined by the IPSS-R, in the presence of even one
additional risk factor.

While there are no good actors in this traditionally high-risk
population, complex karyotype MDS patients represent a
heterogeneous group whose overall survival and disease
course is affected by factors other than the number of chro-
mosomal abnormalities they carry [3]. The types of abnorm-
alities present, co-occurring somatic mutations, and clinical
features all contribute to the actual risk in patients with com-
plex karyotypes. Several groups have examined the prognostic
impact of a monosomal karyotype (MK), defined as a com-
plete loss of an autosomal chromosome in the presence of at
least one other structural abnormality or additional monosomy,
as in practice, most patients with MK also have CK [6].
Parsing complex karyotypes as monosomal can identify MDS
patients with even greater risk than predicted by tools like the
IPSS-R, although the independent prognostic significance of
MK is still debated [7–12]. Other studies have focused on the
high frequency of TP53 mutations in patients with complex
karyotypes [13–17]. TP53 mutations have highly adverse
prognostic implications in a wide variety of clinical settings
that are independent of other risk factors [18–25]. This is
despite their association with adverse clinical features such as
increased blast proportion, severe thrombocytopenia, and
multiple chromosomal abnormalities [13–15, 21, 26]. The type
and abundance of TP53 mutation in question may further
refine its prognostic impact [27–29]. The extent to which TP53
mutations can modify risk assessment in otherwise higher risk
MDS patients with multiple chromosomal abnormalities
remains unclear.

To examine the impact of somatic mutations in CK-MDS,
the International Working Group (IWG) for MDS Molecular
Prognosis Committee collected clinical and mutational infor-
mation about complex karyotype MDS patients evaluated at 19
centers internationally. We examined risk-associated markers in
complex karyotype MDS such as the presence of MK, specific
chromosomal lesions, total number of lesions, clinical vari-
ables, and the presence of TP53 mutations to determine which
features had independent prognostic value that could be used to
better risk stratify patients with complex karyotype MDS.

Materials and methods

Patient data collection

Members of the IWG for MDS shared clinical and mutation
data on 359 patients with complex karyotypes collected

from 19 centers (Supplemental Table 1) some of whom
were included in previously published MDS cohorts [13–
15, 24, 30]. Patients consented to sample collection, ana-
lysis, and clinical annotation at their home institution on
protocols approved by local ethics review boards in accor-
dance with the Declaration of Helsinki. All data shared for
this study were assigned unique patient identifiers. Anon-
ymized patient data included age, sex, blood counts, bone
marrow blast proportion, somatic mutations calls, and
conventional G-banded karyotype results. Patients were
excluded from further study if they did not meet criteria for
a complex karyotype after manual review, had a sequenced
sample collected only at the time of stem cell transplanta-
tion, or had a diagnosis of acute myeloid leukemia (AML)
with ≥30% blasts at the time of sample collection. Patients
with oligoblastic AML with up to 29% blasts were
included.

Karyotype review

Every complex karyotype was manually reviewed and
parsed independently by RB and DH blinded to the clinical
information or TP53 mutation status associated with the
patient. Discrepancies in total numbers of chromosome
abnormalities, monosomal status, or the presence of specific
abnormalities were resolved jointly by RB and DH. A brief
schema with examples describing the approach used to
count and identify chromosomal abnormalities can be found
in Supplemental Table 2.

Mutation assessment

Each center performed its own sequencing to interrogate the
TP53 gene, resulting in a call of presence or absence of a
TP53 mutation. This included Sanger sequencing or various
forms of next-generation sequencing. Some centers reported
only the presence or absence of a TP53 mutation, while
others provided the DNA change, the predicted impact on
coding amino acid sequence, and the variant allele fraction.
Several centers reported the presence or absence of other
mutations from larger panels of myeloid malignancy-
associated genes.

Statistical analysis

Patient characteristics were compared between groups using
Fisher's exact test for categorical data and the Wilcoxon rank-
sum test for continuous measures. Overall survival (OS) was
measured from the time of sample collection for the determi-
nation of mutational status to the time of death from any cause.
OS curves were constructed using the method of Kaplan and
Meier and compared using the log-rank test. OS was evaluated
in Cox proportional hazard regression modeling univariately
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and a stepwise procedure was used to determine a final mul-
tivariable model. Patient characteristics (age, sex, bone mar-
row blast %, hemoglobin, absolute neutrophil count, and
platelet count categorized as shown in the patient characteristic
table and IPSS-R), karyotypic features (number of abnormal-
ities, monosomal karyotype, abnormal 17, 17p deletion with
predicted loss of the TP53 locus, −7, del(7q), del(5q),
abnormal 3q, der(1;7), abnormal 9, −13/13q, −18/18q, −21,
+21), and mutational status (including the presence or absence
of mutations in TP53, DNMT3A, ASXL1, TET2, U2AF1,
RUNX1, JAK2, SF3B1, CBL, NRAS, KRAS, EZH2, SRSF2,
IDH1, and IDH2) were included as candidates in the modeling
where at each step the variable entry criterion was p < 0.20 and
variables were retained in the model if p < 0.05. Models
including IPSS-R did not include its components as candidate
variables. A missing indicator was used in modeling for
unknown values for a category. A landmark analysis at day
100 post sample collection was used to compare patients who
had received a transplant to those who did not. The Welch t-
test was used to compare the average mutation rate between
groups. All tests are reported as two-sided and considered
significant at the <0.05 level. SAS version 9.4 and RStudio
version 0.99.441 with R version 3.4.1 were used for all
analyses.

Results

Complex karyotype MDS patients have a high
frequency of TP53 mutations which are associated
with specific clinical features

Of the 359 MDS patients with CK shared with the IWG for
MDS Prognosis Molecular Committee, 339 (94%) had
TP53 sequencing performed. One or more mutations were
identified in 186 (55%) cases. Patient characteristics strati-
fied by TP53 mutation status are shown in Table 1. Of the
186 TP53 mutated patients, 164 (89%) were evaluable for
multiple mutations and 159 (85%) could be analyzed for
type of mutation.

As shown in Table 1, TP53mutations were associated with
several prognostically adverse features. This included a lower
median platelet count (47 vs. 70 × 109/L, p= 0.002) and
higher median bone marrow blast percentage (9% vs. 5%, p <
0.001), both of which are considered unfavorable risk factors
in various prognostic scoring systems. No differences in
hemoglobin level or absolute neutrophil counts were noted.

TP53 mutations are associated with molecular and
cytogenetic abnormalities

Complex karyotype MDS patients harbor fewer somatic
point mutations in genes other than TP53 when compared

with non CK-MDS patients [13–15]. The majority of
samples in our cohort were tested for somatic mutations in
several recurrently mutated MDS genes (Supplemental
Table 3). The most frequently mutated genes after TP53
were DNMT3A (31/324, 10%), ASXL1 (29/319, 9%), and
TET2 (27/318, 8%), all at rates lower than observed in MDS
cohorts unselected by karyotype. Several gene mutations
were even more underrepresented in the TP53 mutant
patient samples compared to wild-type CK-MDS (Fig. 1a,
Supplemental Fig. 1). The TP53 mutant group had fewer
mutations of ASXL1 (5% vs. 15%, p= 0.003), U2AF1 (3%
vs. 11%, p= 0.008), and RUNX1 (0.5% vs. 9%, p < 0.001).
A total of 250 patients had 12 core genes sequenced (TP53,
ASXL1, RUNX1, U2AF1, DNMT3A, TET2, JAK2, SF3B1,
SRSF2, NRAS, CBL, and EZH2). Of the 156 with mutated
TP53, 111 (71%) had no additional gene mutations com-
pared to 47 (50%) of the 94 without a TP53 mutation (p=
0.001 by Fisher's exact test). The average number of
mutated genes in the TP53 mutant group was 0.39 non-
TP53 genes/patient, whereas in the TP53 wild-type group,
this ratio was 0.81 (p < 0.001 by Welch t-test).

TP53 mutation status was also associated with the
number and types of chromosomal abnormalities present
within the complex karyotype. Del(5q), monosomy 7, and
abnormalities of chromosome 17 were the most common
recurrent cytogenetic findings, present in 156 (43%), 123
(34%), and 121 (34%) members of the entire cohort
respectively (Fig. 1b, Supplemental Table 4).

Cases with five or more karyotype abnormalities were
described as having ‘high complexity’ (HC) (Fig. 2a) given
the marked difference in OS at this cut point (Fig. 3c). HC
was found in 86% of TP53 mutant patients compared with
53% of those without an identified TP53 mutation (p <
0.001). TP53 mutation status was also associated with MK,
a feature that has frequently been cited as an independent
prognostic measure in MDS and AML [7, 8, 11, 12, 31–34].
Eighty-eight percent of the TP53 mutant patients had MK
compared to 61% without the mutation (p < 0.001). These
distinct methods of describing the complex karyotype, HC
and MK, demonstrate significant overlap and association
with TP53 mutation status as 42% of patients harbored all
three features (Fig. 2b).

Karyotype abnormalities and TP53 mutation are
associated with OS

As a group, this cohort with CK-MDS patients had a poor
outcome, with a median OS of only 0.9 years (Fig. 3a).
Even shorter OS might be expected in the TP53 mutant
subset given the associations between TP53 mutation
status and the adverse clinical and cytogenetic measures
described above. Indeed, CK-MDS patients with TP53
mutation had a significantly greater hazard ratio (HR) of

TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct. . .



Table 1 Patient demographics and laboratory values

N (%) TP53 WTa TP53 muta P valueb

N 359 153 186

Age, median (range) 68 (23, 94) 67 (34, 89) 70 (23, 94) 0.096

<50 Years 28 (8) 12 (8) 15 (8) 0.22

50–59 Years 55 (15) 25 (16) 25 (13)

60–69 Years 107 (30) 51 (33) 49 (26)

70–80 Years 135 (37) 56 (37) 73 (39)

≥80 Years 33 (10) 9 (6) 23 (12)

Unknown 1 (<1) 0 (0) 1 (<1)

Sex

Male 223 (62) 102 (67) 107 (58) 0.093

Female 136 (38) 51 (33) 79 (42)

Bone marrow blast %, median (range) 7 (0, 28) 5 (0, 27) 9 (0, 28) <0.001

<5% 135 (38) 69 (45) 54 (29) 0.001

5–10% 104 (29) 39 (25) 59 (32)

11–20% 101 (28) 35 (23) 65 (35)

21–29% 6 (2) 2 (1) 3 (2)

Unknown 13 (4) 8 (5) 5 (3)

IPSS-R risk group

Very low 0 (0) 0 (0) 0 (0) <0.001

Low 5 (1) 4 (3) 1 (<1)

Intermediate 26 (7) 15 (10) 6 (3)

High 73 (20) 39 (25) 29 (16)

Very high 224 (62) 78 (51) 136 (73)

Unknown 31 (9) 17 (11) 14 (8)

Hemoglobin, median (range) 9.4 (3.7, 17.0) 9.4 (3.7, 17.0) 9.2 (5.3, 13.5) 0.43

<8.0 (g/dL) 61 (17) 29 (19) 30 (16) 0.85

8.0–9.99 (g/dL) 161 (45) 67 (44) 85 (46)

10.0–11.99 (g/dL) 102 (28) 40 (26) 55 (30)

≥12.0 (g/dL) 23 (6) 14 (9) 7 (4)

Unknown 12 (3) 3 (2) 9 (5)

Absolute neutrophil count (ANC), median (range) 1.10 (0, 35.0) 1.31 (0, 17.27) 0.94 (0, 35.0) 0.22

<0.5 (×103/μL) 62 (17) 28 (18) 32 (17) 0.49

0.5–1.8 (×103/μL) 145 (40) 62 (41) 74 (40)

1.8–9.99 (×103/μL) 101 (28) 45 (29) 47 (25)

≥10 (×103/μL) 7 (2) 5 (3) 2 (1)

Unknown 44 (12) 13 (8) 31 (17)

Platelet count, median (range) 58 (4, 1073) 70 (5, 1073) 47 (5, 693) 0.002

<50 (×103/μL) 152 (42) 50 (33) 93 (50) <0.001

50–99 (×103/μL) 89 (25) 40 (26) 46 (25)

100–149 (×103/μL) 49 (14) 24 (16) 22 (12)

150–449 (×103/μL) 46 (13) 26 (17) 15 (8)

≥450 (×103/μL) 5 (1) 4 (3) 1 (1)

Unknown 18 (5) 9 (6) 9 (5)

aTP53 mutation status was unknown for 20 samples
bTest excludes unknown categories
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Fig. 1 Select somatically mutated genes and karyotype abnormalities. a
Co-mutation plot for somatically mutated genes in complex karyotype
MDS patients with and without mutated TP53 (left and right panels,
respectively). Each column represents an individual patient. A colored
bar indicates a mutation of the gene in that row with gray bars indi-
cating missing data. The last column indicates the number of patients
with a mutation of each gene. b Plot of recurrent karyotype

abnormalities in patients with and without mutated TP53 (left and right
panels, respectively) using the same schema as in (a). TP53 mutant
patients had a higher rate of del(5q) abnormality (50% vs. 34%, p=
0.004), abnormal chromosome 13 (18% vs. 8%, p= 0.017), abnormal
chromosome 17 (40% vs. 27%, p= 0.016), abnormal chromosome 18
(28% vs. 14%, p= 0.004), and del(7q) (14% vs. 7%, p= 0.033), but a
lower rate of der(1;7)(q10;p10) ( < 1% vs. 5%, p= 0.025)

Fig. 2 Interaction between TP53 mutation, monosomy, and number
of karyotype abnormalities. a Each column represents an indivi-
dual patient with orange and black bars indicating TP53 mutation
and monosomal karyotype respectively. Colored bars in the last

row indicate the number of karyotype abnormalities with green
representing 3, blue representing 4, and red representing 5 or more.
b Venn diagram showing number of cases with overlapping
features

TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct. . .



death (2.57; 95% confidence interval (CI) 1.97–3.34, p <
0.001) with a median OS of 0.6 years compared to 1.5
years for TP53 wild-type patients (Fig. 3b). No other gene
mutation was significantly associated with OS in uni-
variate analyses.

Prior studies of MDS patients unselected by karyotype
have demonstrated that the prognostic significance of TP53
mutations depends in part on their variant allele frequency
(VAF), with smaller clones having a less adverse impact
[27, 29]. To determine whether this holds true in complex
karyotype MDS, we examined the survival of 151 patients
with TP53 mutations and available VAF data. Nearly two-

thirds of TP53 mutant patients had a VAF > 0.4, with a
significantly shorter median OS than those with a VAF ≤ 0.4
(0.6 vs. 1.1 years, p= 0.004; Supplemental Fig. 2A).
However, mutated patients with a TP53 VAF ≤ 0.4 still had
an inferior survival compared with TP53 wild-type patients
(1.1 vs. 1.5 years, p= 0.001). While TP53 VAF was not
adjusted for copy number in this analysis, the results were
similar in the subset of patients without loss of 17p in their
karyotype (p= 0.014 for TP53 VAF ≤ 0.4 vs. > 0.40; Sup-
plemental Fig. 2B).

The number and type of mutations in TP53 had less
impact on OS. Less than 15% of the cohort carried more
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than one TP53 mutation, and this was not associated with
any difference in survival compared to those harboring only
1 mutation (p= 0.77). In contrast, an increase in median OS
was noted for missense mutations (n= 126) compared with
potentially more disruptive types of mutations (frameshift,
nonsense, and splice site; n= 33) among the 159 patients
with mutation-type data available (p= 0.016; Supplemental
Fig. 3). Complete loss of the TP53 locus through deletion of
chromosome 17p is not routinely captured by gene
sequencing, but could have the same effect as a TP53
mutation. However, cytogenetic abnormalities predicted to
cause copy number loss at the TP53 locus had no prognostic
impact regardless of TP53 mutations status (Supplemental
Fig. 4), suggesting that loss of a TP53 allele by cytogenetic
analysis might not be biologically equivalent to a TP53
point mutation in CK-MDS [2, 5, 35, 36]. Further testing of
this hypothesis would require examination with more reli-
able methods including TP53-specific fluorescence in situ
hybridization (FISH) probes or copy number-sensitive
genomic arrays.

To determine how HC or MK could impact prognosis,
we examined OS in patients stratified by these measures.
Individually, MK and having five or more karyotype
abnormalities were associated with inferior OS (Fig. 3c, d).
However, in a multivariable model that considered TP53
mutation, MK, and HC, the presence of MK was no longer
statistically significant (Table 2). Indeed, TP53 mutation
status could strongly stratify survival of patients with and
without MK (Fig. 3e, f). Double negative patients, defined
as having neither TP53 mutation nor HC, had markedly
better outcomes with a median OS of 2.6 years compared
with 0.6 years (p < 0.001) for TP53 mutant and 1.2 years (p
< 0.001) for TP53 wild type but with HC (Fig. 4, Supple-
mental Figure 5).

Multivariable prognostic modeling of OS

While the two-component model above can risk stratify
CK-MDS patients, it does not consider the potential con-
tributions of individual karyotype abnormalities, other gene
mutations, or clinical measures that have significant uni-
variate associations with OS (Supplemental Table 5). To
explore the prognostic value of these features, we

performed multivariable stepwise Cox regression modeling
of OS in our cohort.

Candidate variables included age, sex, blood counts,
bone marrow blast percentage, mutations in sequenced
genes, and the presence of the specific karyotype abnorm-
alities listed in Supplemental Table 5. TP53 mutation was
the most significant genetic risk factor, with a HR of 2.67
(Table 3) followed by mutations of SF3B1 and NRAS
(Supplemental Figure 6). Cytogenetic features in the final
model included monosomy 7 and abnormalities of chro-
mosomes 3q and 9. These factors had the greatest impact in
patients without a TP53 mutation, although monosomy 7
was associated with a shorter OS even in the TP53 mutant
group (Supplemental Figure 7). The only clinical factors to
retain independent prognostic significance were elevated
bone marrow blast percentage and low hemoglobin con-
centration (Supplemental Figure 8). Importantly, con-
sideration of sample origin (univariate p= 0.18) during
model building did not alter the significance of other cov-
ariates and was not retained (data not shown). Repeating the
multivariable analysis with IPSS-R risk groups in place of
bone marrow blast percentage and blood counts as candi-
date variables gave similar results with IPSS-R high (HR
3.27) and very high (HR 4.54) risk groups retained in the
final model (Supplemental Table 6; Supplemental Figure 9).
Most of the prior model variables remained significant with
monosomy 21 as the only additional risk factor observed. In
both models, TP53 mutation status remained the most fre-
quently occurring risk factor not currently considered by
existing prognostic scoring systems.

Discussion

Complex karyotype MDS includes a diverse collection of
patients typically labeled as having a very poor prognosis
[2, 4, 5]. Here we examined data from 359 CK-MDS
patients evaluated at multiple centers around the world to
determine which factors might improve current risk strati-
fication methods. Collectively, these patients shared fea-
tures that distinguished them from MDS patients without
complex karyotypes. In addition to greater structural
genomic instability and a high frequency of TP53 mutations

Table 2 Overall survival modeling of TP53 mutation and karyotype features

Overall survival model Univariable Multivariable

Considered features HR [95% CI] P value HR [95% CI] P value

Monosomal yes vs. no 1.95 [1.46–2.62] <0.001 1.26 [0.91–1.75] 0.17

Number of abnormalities ≥5 vs. 4 or 3 2.26 [1.70–3.02] <0.001 1.61 [1.16–2.24] 0.004

TP53 mutation vs. no mutation 2.57 [1.97–3.34] <0.001 2.12 [1.61–2.79] <0.001

Unknown vs. no mutation 0.70 [0.38–1.31] 0.27 0.69 [0.37–1.29] 0.25

TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct. . .



(55%), patients with CK-MDS had fewer somatic mutations
in other MDS-associated genes. These differences were
even more pronounced in the TP53 mutant subset of CK-
MDS, which were more likely to have high complexity,
monosomal karyotypes, certain chromosomal abnormal-
ities, and an even lower number of co-mutated myeloid
malignancy genes. TP53 mutant CK-MDS patients also had
significantly higher bone marrow blast proportion and lower
platelet counts, two factors strongly associated with ele-
vated prognostic risk considered by clinical scoring systems
like the IPSS-R. Indeed, TP53 mutant CK-MDS patients
had an OS that was less than half of that for non-mutant
CK-MDS. This powerful adverse prognostic association
was statistically independent of other risk factors, including
having a higher number of karyotype abnormalities, which
together overrode the prognostic impact of the monosomal
karyotype.

The consideration of monosomal karyotype as a more
accurate risk factor than karyotype complexity in MDS and
AML has been controversial [9]. First, not all studies agree
on the effect of MK on survival [6, 7, 10]. Second, the vast
majority of studies examining the prognostic impact of MK
in MDS did not evaluate TP53 mutation status or HC,
missing these potential confounders strongly associated
with MK [8, 12, 37]. Finally, the definition of MK is not
recognized by the International System for Human Cyto-
genetic Nomenclature (ISCN) and can be problematic to
identify in practice [38, 39]. Some cases of apparent
monosomies may be due to complicated unbalanced rear-
rangements and not truly representative of loss of a com-
plete chromosome. Short of performing 24-color metaphase
FISH, this can be difficult to measure reliably. Our results
suggest that specific monosomies can retain prognostic
significance after consideration of HC and TP53 mutation
status, but the more problematic designation of MK does
not. Assessment of just HC and TP53 mutation status

constitutes a relatively simple means of identifying the
roughly 20% of CK-MDS patients predicted to have an OS
that resembles that of IPSS-R intermediate risk patients.

Consideration of multiple clinical, cytogenetic, and
molecular features identifies TP53 mutation among the most
significant prognostic factor in patients with CK-MDS, yet
it remains the only marker not routinely assessed in clinical
practice. Here we demonstrate that the presence of TP53
mutation has an independent impact on prognosis that is as
great as having severe anemia and greater than having a
bone marrow blast proportion of 10–29%. The muted
impact of increased blast proportion and the absence of
severe thrombocytopenia as independent risk factors are
likely due to the association of these features with TP53
mutations. The impact of a TP53 mutation is pronounced
even in patients assigned to the very high risk group by the
IPSS-R (Supplemental Figure 9). Mutations of SF3B1 and
NRAS, while rare, were also associated with a greater HR of
death. NRAS mutations are known to be adverse in a variety
of contexts [40, 41], but SF3B1 mutations are typically
considered favorable in MDS [14, 15, 42, 43]. In the con-
text of a complex karyotype, SF3B1 mutations appear
adverse, much like in rare cases of SF3B1-mutated AML
[44]. Factors that might explain this association were not
evident in our small subset of 11 SF3B1 mutant cases.
Future prognostic scoring systems that include molecular
features will need to consider the interaction between
somatic mutations and more traditional risk factors. In the
meantime, patients with CK-MDS considered to have a
poor prognosis with tools like the IPSS-R can be further risk
stratified by consideration of the features in our survival
model.

The value of identifying TP53 mutations in MDS may
extend beyond their prognostic significance. This study and
others have demonstrated that TP53 mutant MDS patients
share clinical and genetic features that distinguish them
from patients with wild-type TP53. In addition to a higher
bone marrow blast proportion, lower platelet count, and
greater likelihood of having a high number of chromosomal
aberrations, TP53 mutant patients relapse quickly after
various forms of treatment [20, 22, 24, 45, 46]. Hemato-
poietic clones defined by TP53 mutations are enriched after
chemotherapy exposure and in therapy-related MDS, sug-
gesting they harbor intrinsic resistance to genotoxic stress
[47–50]. TP53 mutations may also help select therapy. For
example, novel agents, like APR-246 that specifically target
missense mutations of TP53 are in development [51]. As a
consequence, TP53 mutant CK-MDS could be considered a
distinct subtype of disease with common genetic, clinical,
and therapy-related features.

Potential limitations of this multi-center, retrospective
analysis include possible differences in patient features and
clinical practice patterns as well as the variety of sequencing

0.0

0.2

0.4

0.6

0.8

1.0

Years

pr
ob

ab
ili

ty

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0
TP53  Mutation Absent and <5 Abnormalities (N=72)
TP53  Mutation Absent and 5+ Abnormalities (N=80)
TP53  Mutated (N=186)

TP53  Mut Absent <5 vs. 5+ Abnormalities p=0.008
all other comparisons p<0.001

Fig. 4 Overall survival stratified by TP53 mutation and high com-
plexity status

D. Haase et al.



methods and analysis pipelines at each institution. Not all
centers reported the type, number, or VAFs of TP53
mutations identified and data on time to AML transforma-
tion was not available. However, sample origin was not a
significant confounder in our multivariable analyses.
Information about treatment status was incomplete or absent
in over a third of the cohort, although no disease-modifying
therapy, including stem cell transplantation, has been defi-
nitively shown to mitigate the adverse impact of TP53
mutation. Only 27 patients (8%) were reported as having
received a stem cell transplant and the transplant status was
not known for the majority of patients. Similarly, whether
patients had primary vs. therapy-related MDS (t-MDS) was
not known for 86 patients (24%). Only 21 patients (6%)
were reported as having t-MDS. These measures had little
impact on OS (Supplementary Figure 10).

Conclusion

This study has several important strengths. It examines a
large cohort of CK-MDS patients powered to find strong
associations between clinical and genetic disease features

including OS. It validates and expands upon results from
many prior smaller studies. This consistency and the multi-
institutional nature of the cohort imply that our conclusions
are robust and generalizable. Finally, our findings support
modifications to the standard of care for CK-MDS patients
to include routine genetic sequencing of TP53. These
mutations modify risk assessment even in CK-MDS
patients traditionally considered to have the greatest dis-
ease risk. TP53 mutation status is the most significant risk
marker in this population missing from prognostic tools
used in clinical practice. Cytogenetics alone appears insuf-
ficient for the evaluation of CK-MDS patients and routine
testing for TP53 mutations should be considered in this
population.
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