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Abstract 

 

The 2016 revision of the World Health Organization (WHO) classification of tumors of 

hematopoietic and lymphoid tissues is characterized by a closer integration of 

morphology and molecular genetics. Notwithstanding, the myelodysplastic syndrome 

(MDS) with isolated del(5q) remains so far the only MDS subtype defined by a genetic 

abnormality. About half of MDS patients carry somatic mutations in spliceosome genes, 

with SF3B1 being the most commonly mutated one. SF3B1 mutation identifies a 

condition characterized by ring sideroblasts, ineffective erythropoiesis, and indolent 

clinical course. A large body of evidence supports recognition of SF3B1-mutant MDS as 

a distinct nosologic entity. To further validate this notion, we interrogated the dataset 

of the International Working Group for the Prognosis of MDS (IWG-PM). Based on the 

findings of our analyses, we propose the following diagnostic criteria for SF3B1-mutant 

MDS: (i) cytopenia as defined by standard hematologic values; (ii) somatic SF3B1 

mutation; (iii) morphologic dysplasia (with or without ring sideroblasts); (iv) bone 

marrow blasts <5% and peripheral blood blasts <1%. Selected concomitant genetic 

lesions represent exclusion criteria for the proposed entity. In patients with clonal 

cytopenia of undetermined significance, SF3B1 mutation is almost invariably associated 

with subsequent development of overt MDS with ring sideroblasts, suggesting that this 

genetic lesion provides presumptive evidence of MDS in the setting of persistent 

unexplained cytopenia. Diagnosis of SF3B1-mutant MDS has considerable clinical 

implications in terms of risk stratification and therapeutic decision making. In fact, this 
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condition has a relatively good prognosis and may respond to luspatercept with 

abolishment of transfusion requirement. 

 

Abstract word count: 250 
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Introduction 

 

The World Health Organization (WHO) classification of tumors of hematopoietic and 

lymphoid tissues has been revised in 2016.1,2 While several novel molecular findings 

with diagnostic and/or prognostic importance have been incorporated into this 

revision, a closer integration of morphology and molecular genetics is still needed for 

many hematologic malignancies. 

 

According to the WHO classification of myeloid neoplasms, myelodysplastic syndromes 

(MDS) are a group of clonal disorders characterized by morphologic dysplasia in 

hematopoietic cells, ineffective hematopoiesis, and peripheral cytopenia(s).3 In the last 

few years, the ascertainment of clonal nature has become feasible in clinical practice 

with the use of massive parallel sequencing for identification of somatic gene 

mutations.4 Mutated driver genes include those of RNA splicing, DNA methylation, 

histone modification, transcription regulation, DNA repair, signal transduction, and 

cohesin complex.5,6 

 

Defining the genetic basis is clinically relevant not only in the diagnostic approach to 

MDS, but also in the prognostication and therapeutic decision making.4 This paradigm 

is represented by the MDS with isolated del(5q), the only MDS subtype currently 

defined by a genetic abnormality.3 Deletion 5q is a disease-defining genetic lesion as 

haploinsufficiency of several genes mapping on the deleted chromosomal region, 

including CSNK1A1 and RPS14, explains the molecular pathophysiology of the 
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disease.7,8 It also predicts response to lenalidomide, which induces the ubiquitination 

and degradation of CSNK1A1, abolishing the selective advantage of hematopoietic cells 

carrying del(5q).9,10 

 

About half of MDS patients carry somatic mutations in spliceosome genes, and of 

these, SF3B1 is the most commonly mutated one. The SF3B1 gene encodes the splicing 

factor 3b subunit 1, and is typically mutated in MDS with ring sideroblasts (MDS-

RS).11,12 The revised WHO classification specifically accounts for this genetic lesion, and 

a diagnosis of MDS-RS can now be made if ring sideroblasts comprise as few as 5% of 

nucleated red cells and a somatic mutation of SF3B1 is present.3 Several lines of 

evidence support recognition of somatic SF3B1 mutation as a disease-defining genetic 

lesion. In fact, it (i) most often represents a founding genetic lesion; (ii) is a major 

determinant of disease phenotype; (iii) has an independent prognostic value on survival 

and risk of progression to acute myeloid leukemia (AML); (iv) may predict response to 

specific agents.13-17 

 

In this report, we analyzed the available evidence supporting the recognition of SF3B1-

mutant MDS as a distinct nosologic entity. To validate our proposal, we interrogated 

the dataset of the International Working Group for the Prognosis of Myelodysplastic 

Syndromes (IWG-PM), including 3479 patients with known SF3B1 mutation status from 

18 centers or networks. 
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Current principles of MDS classification 

 

According to the WHO classification, MDS are currently categorized according to the 

number of cytopenia at presentation, the number of lineages manifesting dysplasia, the 

percentage of ring sideroblasts, and of blasts in the bone marrow and the peripheral 

blood (Table 1).3 While only one genetic abnormality, del(5q), is used to define a 

specific MDS subtype, i.e. MDS with isolated del(5q), selected cytogenetic abnormalities 

are recognized as “MDS defining” in a cytopenic patient, as they provide presumptive 

evidence of MDS even in the absence of definitive morphologic features. 

 

The MDS with ring sideroblasts (MDS-RS) is subdivided into a condition with single 

(erythroid) lineage dysplasia (MDS-RS-SLD), and a condition with multilineage dysplasia 

(MDS-RS-MLD).3,18 

 

SF3B1 mutation is critical to the pathophysiology of myelodysplasia and ring 

sideroblasts 

 

SF3B1 mutation is an initiating genetic lesion in MDS 

 

Several lines of evidence are consistent with the notion that SF3B1 mutation may be an 

initiating genetic event and that primitive lympho-myeloid hematopoietic stem cells 

represent the propagating cells in SF3B1-mutant MDS.6,11-13,15,19,20 
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Previous reports showed that SF3B1 mutations are typically heterozygous and the 

overall median VAF is approximately 40%.6,11-13 These data have been confirmed by the 

analysis of VAF reported in the IWG dataset, which showed median values for the 

observed variants ranging from 0.35 to 0.43.  

 

Computational prediction in MDS-RS patients with one or more recurrent driver 

mutations based on targeted sequencing data, coupled with mutational analysis of the 

SF3B1 gene in hematopoietic stem/progenitor cells, demonstrated that the SF3B1 

mutation may occur alone or as the first event in most cases, whereas it appears to be 

secondary to other oncogenic mutations in a minority of cases,15,19,20 In these latter 

subjects, most frequently SF3B1 mutations are occurring on the background of TET2-, 

DNMT3A- or ASXL1-mutated age-related hematopoietic clones (Figure 1).14,15 

 

Phenotypic and functional evidence also indicated that the most primitive lympho-

myeloid hematopoietic stem cells (Lin−CD34+CD38−CD90+CD45RA−) represent the 

origin of the mutated SF3B1 clone in MDS with ring sideroblasts, and also represent 

the rare MDS propagating cells.15,20 Mutations identified in the hematopoietic stem cell 

compartment were also present in downstream myeloid and erythroid progenitor 

cells.15 
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Relationship between SF3B1 mutation, aberrant mRNA splicing, and ring sideroblasts 

 

The strong association between SF3B1 mutation and myelodysplasia with ring 

sideroblasts was evident since the first reports.11,12 A subsequent study provided 

evidence that, when accounting for cases assigned to non-sideroblastic WHO 

categories, SF3B1 mutation had a positive predictive value of 98% for disease 

phenotype with ring sideroblasts.13 These data are consistent with a causal relationship 

between SF3B1 mutation and bone marrow ring sideroblasts. 

 

Following these genotype-phenotype correlation analyses, investigations were then 

performed to explore the abnormal biologic pathways and networks downstream of 

the mutation. Studies on cell lines and primary human cells showed that the mutant 

SF3B1 protein retains altered function, resulting in deregulated expression and splicing 

of key genes and pathways in myelodysplastic hematopoietic stem and progenitor 

cells.21,22 Conditional knock-in mouse models of the most common SF3B1 mutation, 

Sf3b1(K700E), confirmed that Sf3b1(K700E) mice develop macrocytic anemia, erythroid 

dysplasia, and long-term hematopoietic stem cell expansion.23,24 

 

RNA sequencing studies in SF3B1-mutated cells provided evidence that most of the 

aberrant splicing events selectively observed in SF3B1-mutated samples are caused by 

misrecognition of 3' splice sites, resulting in a frameshift.16,25 These studies also 

indicated that approximately 50% of the aberrant mRNAs induced by SF3B1 mutations 

undergo degradation by a nonsense-mediated mRNA decay (NMD) pathway, resulting 
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in down-regulation of canonical transcripts and protein expression.16,25 In addition, it is 

also possible that NMD-insensitive aberrant transcripts are translated into aberrant 

proteins with altered function.16,25,26 

 

Two genes involved in mitochondrial iron metabolism synthesis, PPOX and ABCB7, 

were found to be significantly downregulated in SF3B1-mutated samples. As PPOX 

encodes protoporphyrinogen oxidase, which catalyzes the dehydrogenation of 

protoporphyrinogen IX to form protoporphyrin IX, it is likely that haploinsufficiency of 

this gene may induce defective heme synthesis and iron accumulation into the 

mitochondria. ABCB7, the causative gene of congenital sideroblastic anemia with 

cerebellar ataxia, uniformly showed reduced expression in SF3B1-mutated samples, 

consequent to abnormal splicing and NMD.16,27 Forced ABCB7 expression was found to 

restore erythroid colony growth and decreased mitochondrial ferritin expression level 

in CD34+ cells from MDS with ring sideroblasts, supporting the hypothesis that ABCB7 

is implicated in the phenotype of this disorder.28,29 

 

SF3B1 mutation is a major determinant of disease phenotype in MDS 

 

SF3B1 mutation is associated with a highly homogeneous disease phenotype and 

distinctive demographic features 

 

Patients with SF3B1-mutant MDS show a homogeneous disease phenotype 

characterized by erythroid dysplasia with ring sideroblasts, and ineffective 
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erythropoiesis.13,14 Furthermore, cases with multilineage dysplasia according to current 

WHO morphological criteria have only very mild dysplasia in granulocytic or 

megakaryocytic lineage without significant effects on peripheral cytopenia (Figure 3).14 

 

These observations are fully confirmed by interrogating the IWG registry. Patients 

reported in this dataset were originally classified according WHO criteria 2008. These 

analyses clearly show that SF3B1 mutations are enriched in the RARS category, 

accounting for 82% of cases, as well as in the RCMD-RS category (75%) (Table 2). In 

addition, SF3B1 mutations are also reported in 9% of patients with RCUD or RCMD. It 

must be noted that most of these patients harboring an SF3B1 mutation and 5% or 

more RS are expectedly reclassified into the category of MDS-RS according to 2016 

WHO criteria.3,18 In addition, we took advantage from the large IWG dataset to explore 

the relationship between SF3B1 mutation type, VAF and disease phenotype. No 

significant association was found between the most common SF3B1 mutations or VAF 

and WHO categories (P=0.11 and P=0.08, respectively). 

 

In agreement with previous findings, when compared to SF3B1-unmutated MDS, 

SF3B1-mutated MDS show significantly lower hemoglobin values, consistent with a 

high degree of ineffective erythropoiesis, higher neutrophil and platelet counts, and 

lower bone marrow blasts (P<0.001) (Table 2). It is worth noting that 89% and 86% of 

patients with SF3B1-mutant MDS have normal or nearly normal neutrophil and platelet 

counts (i.e. absolute neutrophil count, ANC, >1.0 x 109/L, and PLT count >100 x 109/L) 

at the time of the registration into the IWG dataset. 
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Compared with the whole MDS population, SF3B1-mutated MDS display a significantly 

higher prevalence of females, resulting in a male to female ratio close to 1:1 (Table 2). 

Notably, a similar profile is also typically observed in the only genetically-defined MDS 

subtype, i.e. MDS with del(5q).18 In addition, individuals with SF3B1-mutated MDS have 

a disease onset at a significantly older age than those with SF3B1-unmutated MDS 

(P<0.001) (Table 2). 

 

WHO classification criteria fail to segregate distinct subsets within SF3B1-mutant MDS 

 

Previous reports suggested that the current WHO classification criteria do not allow 

identification of distinct subsets within SF3B1-mutated MDS, supporting the notion that 

SF3B1 mutation is a major determinant of disease phenotype in MDS.14,30,31 In fact, the 

threshold of 15% for ring sideroblasts failed to stratify the prognosis of SF3B1-mutated 

patients.14,31 In addition, single- or multi-lineage dysplasia did not show effect on 

survival or risk of disease progression within SF3B1-mutated patients.14 This observation 

is fully confirmed by the analysis of IWG dataset that clearly show that the presence of 

a single or a multi-lineage dysplasia according to WHO morphological criteria does not 

have any impact on survival of patients with SF3B1-mutated MDS (P=0.4) (Figure 4A). 

Conversely, in agreement with previous reports,14 the occurrence of an excess blasts 

significantly affects survival of patients with SF3B1-mutated MDS (P<0.001) (Figure 4B), 

suggesting that clonal evolution may overcome the prognostic advantage of SF3B1 

mutation. 
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Taken together, these results suggest that SF3B1 mutation is the major determinant of 

disease phenotype, irrespective of current WHO classification criteria. In agreement 

with this conclusion, a previous study adopting unsupervised hierarchical clustering 

analyses showed that SF3B1 mutation is recognized as a hierarchically high 

classification criterion identifying a highly homogeneous group of patients, and that, 

within the group of MDS with ring sideroblasts, two subsets were segregated 

according to SF3B1 mutation status.30 

 

SF3B1 mutation is a favorable prognostic factor 

 

When analyzing the whole MDS study population, several studies suggested that SF3B1 

mutations had a positive prognostic value on overall survival and risk of disease 

progression. Some conflicting results were obtained when these analyses were adjusted 

for phenotypic covariates, mostly due to high collinearity of genotype- and phenotype-

related variables.11,13,14,30 

 

An analysis on the largest cohort of SF3B1-mutated MDS patients so far reported 

showed that the mutation retained an independent positive prognostic value in 

multivariable analyses including demographic and disease-related factors. The 

independent prognostic value of SF3B1 mutations was confirmed when the analyses 

were focused on sideroblastic categories. By contrast, within MDS with excess blasts, 
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the mutation did not retain significant effect on survival and risk of disease 

progression.14 

 

These findings are confirmed by the analysis of IWG dataset that shows that SF3B1 

mutation identifies a subgroup of MDS with favorable prognosis (P<0.001) (Figure 5A). 

A stratified analysis within IPSS-R categories32 indicates that this positive prognostic 

value is significant within very low and low IPSS-R categories (P=0.002), whereas it is 

not retained within intermediate (P=0.66) and high- or very high-risk groups (P=0.11). 

Notably, the positive prognostic value of SF3B1 mutation is also confirmed within the 

categories of RARS (P<0.001) and of RCMD-RS (P=0.003) (Figure 5B and 5C). In 

addition, in order to estimate the prognostic effect of the mutation in 2016 MDS-RS 

categories, we generated two groups of patients including RARS and SF3B1-mutated 

RCUD, and RCMD-RS and SF3B1-mutated RCMD, respectively. Compared with the 

respective 2016 categories, these groups comprised occasional patients with SF3B1-

mutation and less than 5% RS. The positive prognostic value of SF3B1 mutation was 

fully confirmed within the categories of single-lineage (P<0.001) and multi-lineage 

dysplasia (P=0.003) (Figure 5D and 5E). No significant effect of SF3B1 mutation type 

and VAF was observed on survival. Taken together, these data suggest that within 

MDS-RS, SF3B1 mutation represents a classification criterion stronger than single- or 

multi-lineage dysplasia, and concur to support the recognition of MDS with mutated 

SF3B1 as a distinct disease entity. 
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Analysis of the IWG dataset confirmed that the mutation did not retain significant 

effect on survival and risk of disease progression within MDS with excess blasts (Figure 

5F), suggesting that subclonal mutations driving clonal evolution may overcome the 

prognostic advantage of SF3B1 mutation. 

 

SF3B1 mutation constrains the spectrum of genetic events driving clonal 

progression 

 

The available evidence suggests that progression to higher-risk MDS or AML occurs 

with a relatively low frequency in SF3B1-mutated MDS, and is driven by a restricted 

repertoire of cooperating genetic lesions.6,14 

 

The IWG dataset enabled us to validate and expand these observations by testing the 

prognostic value of co-occurring cytogenetic abnormalities and somatic mutations in 

the largest cohort of SF3B1-mutant MDS reported so far. Overall, only 3% of patients 

with MDS and SF3B1 mutation reported in the IWG dataset had a poor or very poor 

risk karyotype according to IPSS-R stratification (Table 2). This figure decreased to 1% 

in patients without excess blasts. Within these latter, a significant effect of IPSS-R poor 

or very poor cytogenetic risk compared to very low, low or intermediate risk groups 

was noticed on OS (P=.032, P=.007 and P=0.49, respectively). Within IPSS-R poor or 

very poor cytogenetic risk, the negative prognostic value of monosomy 7 was fully 

confirmed (n=7, P<0.001). 
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A recent comprehensive transcriptomic analysis showed that a high proportion of 

SF3B1 mutated cases clustering in the category with high risk of leukemic 

transformation showed over-expression of EVI1, resulting from aberrant gene fusions, 

including NRIP1-EVI1 and RUNX1-EVI1, or 3q26 abnormality.33 Accordingly, in a recent 

study on genomic classification of AML, a clustering of SF3B1-mutated cases has been 

also reported in AML with inv(3) or t(3;3).34 Thirteen SF3B1-mutated patients in the 

IWG dataset harbored an inv(3) or t(3;3). These subjects showed markedly lower OS 

(median, 27 vs 60 months) and higher risk of AML evolution (5-year cumulative 

incidence, 75% vs 40%) compared to SF3B1-mutated patients without chromosome 

3q26 abnormalities, though these differences did not reach statistical significance 

(P=.13 and P=.11, respectively).  

 

Overall, SF3B1 mutation is associated with a restricted spectrum of subclonal mutations 

driving clonal progression (Figure 1). According to the available evidence, mutations in 

epigenetic regulators, including TET2, DNMT3A and ASXL1, did not affect survival of 

MDS with SF3B1 mutation.14 Conversely, RUNX1 mutations have been reported to be 

significantly associated with increased risk of disease evolution.6,14 

We tested the prognostic value of the number of mutations and the most frequent co-

occurring or biologically relevant mutated genes in SF3B1-mutant MDS within the IWG 

dataset. When focusing the analysis on SF3B1-mutant MDS without excess blasts, the 

number of co-occurring mutations (i.e. isolated SF3B1 mutation vs 1, 2 or 3 additional 

mutations) did not significantly affect OS (P values ranging from 0.90 to 0.07) (Figure 

6A). The prognostic value of RUNX1 mutations was confirmed highly significant on 
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both OS and cumulative incidence of AML evolution (P<.001) (Figure 6B and 6C). In 

addition, significant effects on OS were noticed for mutations in EZH2 (P=.003) (Figure 

6D), previously reported associated with increased risk of developing transfusion-

dependency in SF3B1-mutated MDS,14 and in NF1 (P=.003), a functional target of 

mutant SF3B1-associated splicing.16 The effect of RUNX1 and EZH2 mutations was 

confirmed in a multivariable analysis adjusted for IPSS-R risk categories (HR=2.66, 

P<0.001 and HR=2.25, P=0.001, respectively), whereas NF1 mutations did not retain 

statistical significance (HR=1.43, P=0.50). 

 

In addition, a significant co-occurrence has been reported between SF3B1 mutations 

and JAK-STAT pathway activating mutations, including the classical JAK2 (V617F) and 

less frequently CALR or MPL mutations.13,14,35-38 This mutation pattern is typically 

associated with the MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-

RS-T), currently recognized by the WHO classification as a distinct disease entity.39 The 

available evidence suggests that SF3B1 mutations act as initiating lesions, responsible 

for myelodysplastic features, i.e. ineffective erythropoiesis and ring sideroblasts, 

whereas JAK2, MPL or CALR mutations drive the emergence of subclones conferring 

the myeloproliferative phenotype.14,36 Within the IWG dataset, a significantly higher 

prevalence of JAK2 and MPL mutations was observed in SF3B1-mutated compared to 

SF3B1-unmutated MDS (Figure 2A). Although these patients did not fulfil WHO criteria 

for a diagnosis of MDS/MPN-RS-T, a significantly higher platelet count was found in 

SF3B1-mutated patients carrying either JAK2 or MPL mutation compared with those 

wild type for these co-mutations (P<0.001).  
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Clinical features and outcomes of patients with MDS with ring sideroblasts without 

SF3B1 mutation 

 

About 20% of MDS-RS according to current WHO criteria do not harbor the SF3B1 

mutation.5,6,11-14 The available evidence is suggesting that SF3B1-unmutated MDS-RS 

have clinical features and outcome significantly different from SF3B1-mutated MDS, 

with a significantly higher prevalence of myeloid and megakaryocyte dysplasia (Figure 

3) and reduced survival.14 These findings are fully confirmed by the interrogation of the 

IWG dataset that showed that SF3B1-negative MDS-RS have a significantly shorter 

survival compared to the SF3B1-mutated group (Figure 5B and 5C). While no specific 

mutation profile was identified in this subset, a significantly higher prevalence of 

mutations in TP53 was reported.14 Mutation patterns of SF3B1-unmutated MDS-RS 

within the IWG dataset are reported in Figure 1B and 2B.  

Although the molecular basis of this subset remains to be clarified, at present it seems 

rational to confirm SF3B1-unmutated cases with ring sideroblasts within the distinct 

category of MDS-RS according to current WHO classification criteria.18 
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Relationship between SF3B1 mutation and del(5q) 

 

SF3B1 mutations have been reported in about 20% of patients classified with the 

category of MDS with isolated del(5q), associated with a variable proportion of ring 

sideroblasts.5,6,13,14 These cases are classified within the category of MDS with isolated 

del(5q) according to current WHO criteria (Table 1).18 

 

The reported co-occurrence of SF3B1 and del(5q) is consistent with the prevalence of 

this genotype within the IWG dataset (Table 2). We analyze the clinical outcome of 

patients with MDS with isolated del(5q) according to SF3B1 mutation status within the 

IWG-PM dataset, and no significant difference in overall survival was noticed (P=.57). In 

addition, no significant effect of the presence or absence of del(5q) on survival of 

SF3B1-mutated MDS without excess of blasts was found (P=.40). 

A study combining single hematopoietic stem and progenitor cell and DNA mutational 

analysis by targeted sequencing and exome sequencing, provided evidence that del(5q) 

usually precedes recurrent driver mutations in isolated del(5q) MDS, whereas in cases 

of ring sideroblastic anemia del(5q) may be either preceded or be followed by SF3B1 

mutation.19 Although genetic ontogeny of these myelodysplastic clones might inform 

the classification process and determine whether a case with concomitant del(5q) and 

SF3B1 mutation should be more appropriately classified as MDS with isolated del(5q) 

or MDS with mutated SF3B1, in many cases clonal hierarchy cannot be easily and 

unequivocally solved in the everyday clinical practice. Therefore, at present it seems 

sensible that these cases should be classified according to current WHO criteria with 
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the category of MDS with isolated del(5q).18 Additional information useful to the 

classification of these cases might derive from studies investigating the effect of this 

genotype and clonal hierarchy on response to lenalidomide and luspatercept. 

 

Proposed diagnostic criteria for MDS with mutated SF3B1 

 

According to the available evidence and the results of the IWG dataset analysis, the 

following classification criteria are proposed for the MDS with mutated SF3B1: (i) 

cytopenia defined by standard hematologic values;40 (ii) somatic SF3B1 mutation; (iii) 

isolated erythroid or multilineage dysplasia (ring sideroblasts are not required for the 

diagnosis); (iv) bone marrow blasts <5% and peripheral blood blasts <1%; (v) WHO 

criteria for MDS with isolated del(5q), MDS/MPN-RS-T or other MDS/MPN, and primary 

myelofibrosis or other MPN are not met. Due to their significant negative prognostic 

value and distinctive interaction with SF3B1 mutations, the following genetic lesions 

represent robust exclusion criteria for the proposed entity (Table 3): (i) poor risk 

genetic features, including monosomy 7, inv(3) or abnormalities of chromosome 3q26, 

resulting in aberrant gene fusions and over-expression of EVI1, and complex karyotype 

(≥3 chromosomal abnormalities); (ii) co-occurring mutations in RUNX1 and/or EZH2. 

 

Clinical and hematological features and survival of patients classified according to the 

proposed criteria are reported in Table 4 and Figure 7. 
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Significance of SF3B1 mutation in Clonal Hematopoiesis of Indeterminate Potential 

(CHIP) and Clonal Cytopenia of Undetermined Significance (CCUS) 

 

SF3B1 have been reported as driver mutated genes in a fraction of individuals with 

CHIP.41,42 In these subjects without any hematologic phenotype, median variant allele 

frequency of driver mutations was typically significantly lower than that observed in 

patients receiving a diagnosis of MDS.43 Whether these studies intercepted a very early 

phase of the evolutionary trajectory of SF3B1-mutated clones preceding clinical 

expressivity or whether additional genetic events are required to promote their 

expansion, remains to be clarified. 

 

In addition, SF3B1 mutations were detected in a fraction of patients with idiopathic 

cytopenia of undetermined significance (ICUS) not fulfilling diagnostic criteria for MDS 

(CCUS).44-46 Preliminary observations suggested that in these patients, SF3B1 mutations 

were highly predictive of developing MDS with ring sideroblasts,46 suggesting that this 

genetic lesion in cytopenic patients might provide presumptive evidence of MDS even 

in the absence of definitive morphological features, as previously acknowledged for 

selected cytogenetic abnormalities, including del(5q).3,47,48 However, prospective studies 

are warranted to validate these observations and establish the value of SF3B1-mutated 

clones in the context of cytopenia of undetermined significance, and patients with 

these features should be carefully monitored and repeated tests, including bone 

marrow examination, should be performed to reach a conclusive diagnosis. 
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Functional consequences of SF3B1 mutation are candidate therapeutic targets 

 

Emerging experimental and clinical evidence suggests that SF3B1 mutation and its 

functional consequences on erythropoiesis are candidate targets for therapeutic 

intervention.  

 

SF3B1-mutant patients have high degree of ineffective hematopoiesis that results in 

elevated erythroferrone levels and inappropriately low serum hepcidin, as typically 

observed in congenital iron loading anemias due to ineffective erythropoiesis.26,49 

Transforming growth factor-β superfamily ligand traps have been found to reduce 

aberrant Smad2/3 signaling and enhance late-stage erythropoiesis in animal models of 

ineffective erythropoiesis.50-52  

 

Luspatercept is a recombinant fusion protein that binds transforming growth factor-β 

superfamily ligands to reduce Smad2/3 signaling. In a phase 2 study, luspatercept was 

found to be effective for the treatment of anemia in lower-risk MDS.53 In a subsequent 

phase 3, placebo-controlled study on transfusion-dependent patients with MDS-RS, 

luspatercept treatment abolished transfusion requirement in about 40% of cases.54 The 

fact that more than 90% of these patients carried a somatic mutation of SF3B1, 

indicates that this drug can be particularly effective in SF3B1-mutant MDS-RS. 
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Several compounds can modulate RNA splicing by a direct interaction with the SF3b 

complex.55,56 Emerging experimental evidence suggests that cancer cells bearing point 

mutations in the RNA splicing factor-encoding genes are dependent on wild-type 

spliceosome function, thus resulting in the preferential killing of spliceosome-mutant 

cells.56 These data demonstrate the therapeutic potential of splicing modulation in 

spliceosome-mutant cancers and clinical studies are ongoing. 

 

Conclusions and open questions 

 

The available evidence and the findings of our analyses indicate that SF3B1-mutant 

MDS represents a distinct entity, mainly characterized by ineffective erythropoiesis, 

relatively good prognosis, and potential response of anemia to luspatercept treatment.  

 

A limited number of concomitant genetic abnormalities are associated with poor 

outcome, and represent exclusion criteria for the proposed nosologic entity. Co-

occurrence of JAK-STAT pathway activating mutations is typically associated with 

thrombocytosis, indicating the diagnosis of MDS/MPN-RS-T. A fraction of patients with 

SF3B1 mutation have relative or absolute monocytosis, indicating a CMML, but the 

concurrent genetic lesions driving this phenotype remain to be clarified. 

 

In patients with CCUS, SF3B1 mutation is almost invariably associated with subsequent 

development of overt MDS with ring sideroblasts, suggesting that this mutation might 
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be included among the genetic lesions that provide presumptive evidence of MDS 

even in the absence of definitive morphological features. 

 

Finally, SF3B1-unmutated MDS-RS appears to be a more heterogeneous group with 

less favorable prognosis and a largely obscure molecular basis, and additional efforts 

are warrant to fully elucidate the pathophysiology of these disorders. 
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Table 1. Diagnostic criteria for MDS entities 

 

Name Dysplastic 

lineages 

Cytopenias Ring 

sideroblasts* 

BM and PB 

blasts 

Cytogenetics° 

MDS with single lineage 

dysplasia (MDS-SLD) 
1 1 or 2 <15%/<5%† 

BM <5%, 

PB <1%, 

no Auer rods 

Any, unless fulfills all 

criteria for MDS with 

isolated del(5q) 

MDS with multilineage 

dysplasia (MDS-MLD) 
2 or 3 1-3 <15%/<5%† 

BM <5%, 

PB <1%, 

no Auer rods 

Any, unless fulfills all 

criteria for MDS with 

isolated del(5q) 

MDS with ring sideroblasts 

(MDS-RS) 
     

MDS-RS-SLD 1 1 or 2 ≥15%/≥5%† 

BM <5%, 

PB <1%, 

no Auer rods 

Any, unless fulfills all 

criteria for MDS with 

isolated del(5q) 

MDS-RS-MLD 2 or 3 1-3 ≥15%/≥5%† 

BM <5%, 

PB <1%, 

no Auer rods 

Any, unless fulfills all 

criteria for MDS with 

isolated del(5q) 

MDS with isolated del(5q) 1-3 1-2 None or any 

BM <5%, 

PB <1%, 

no Auer rods 

del(5q) alone or with 1 

additional abnormality 

except −7 or del(7q) 

MDS with excess blasts 

(MDS-EB) 
     

MDS-EB-1 0-3 1-3 None or any 

BM 5%-9% or PB 

2%-4%, 

no Auer rods 

Any 

MDS-EB-2 0-3 1-3 None or any 

BM 10%-19% or 

PB 5%-19% or 

Auer rods 

Any 

MDS, unclassifiable (MDS-U)      

1% blood blasts 1-3 1-3 None or any 

BM <5%, 

PB = 1%,‡ 

no Auer rods 

Any 

SLD and pancytopenia 1 3 None or any 

BM <5%, 

PB <1%, 

no Auer rods 

Any 

defining cytogenetic 

abnormality 
0 1-3 <15%§ 

BM <5%, 

PB <1%, 

no Auer rods 

MDS-defining abnormality 

Refractory cytopenia of 

childhood 
1-3 1-3 None 

BM <5%, 

PB <2% 
Any 

*Ring sideroblasts as % of marrow erythroid elements. °Cytogenetics by conventional karyotype analysis. 

† If SF3B1 mutation is present. ‡ One percent PB blasts must be recorded on at least 2 separate occasions. § Cases with ≥15% ring 

sideroblasts by definition have significant erythroid dysplasia, and are classified as MDS-RS-SLD.  

http://www.bloodjournal.org/content/127/20/2391/tab-figures-only?sso-checked=true#fn-28
http://www.bloodjournal.org/content/127/20/2391/tab-figures-only?sso-checked=true#fn-28
http://www.bloodjournal.org/content/127/20/2391/tab-figures-only?sso-checked=true#fn-28
http://www.bloodjournal.org/content/127/20/2391/tab-figures-only?sso-checked=true#fn-28
http://www.bloodjournal.org/content/127/20/2391/tab-figures-only?sso-checked=true#fn-30
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Table 2. Characteristics for 3479 patients with known SF3B1 mutation status within the IWG dataset 

 

Variable SF3B1 WT SF3B1 Mutated p-value 

N 2684 795  
Sex     
     Female 978 (36) 349 (44) <0.001 
     Male 1706 (64) 446 (56)  
Age (yrs.) at Sample, median (range) 

e(range)  

69 (11, 99) 72 (34, 94) <0.001 
     < 40 61 (2) 3 (<1) <0.001 
     40 – 49 yrs. 131 (5) 22 (3)  
     50 – 59 yrs. 326 (12) 78 (10)  
     60 –  69 yrs. 822 (31) 205 (26)  
     70 – 79 yrs.  959 (36) 348 (44)  
     80 – 89 yrs.  313 (12) 125 (16)  
     ≥ 90 yrs. 15 (1) 6 (1)  
     Unknown 57 (2) 8 (1)  
WHO 2008    
     del(5q) 91 (3) 20 (3) <0.001 
     RARS 60 (2) 273 (34)  
     RA/RCUD 238 (9) 21 (3)  
     RCMD 520 (19) 18 (2)  
     RCMD-RS 56 (2) 171 (22)  
     RAEB-1 412 (15) 49 (6)  
     RAEB-2 426 (16) 28 (4)  
     Unknown 735 (27) 206 (26)  
FAB     
     RA 611 (23) 61 (8) <0.001 
     RARS 103 (4) 352 (44)  
     RAEB 763 (28) 86 (11)  
     RAEB-T 48 (2) 5 (1)  
     CMML 

4\ 

 

 

61 (2) 4 (1)  
     Unknown 1098 (41) 287 (36)  
Blast %, median (IQR)   4.0 (1, 9.0) 2.0 (1.0, 4.0) <0.001 
      < 5 % 1347 (50) 635 (80) <0.001 
      5 – 10 % 649 (24) 94 (12)  
     11  –  20 % 486 (18) 33 (4)  
     21 – 30 % 23 (1) 2 (<1)  
     Unknown 179 (7) 31 (4)  
Hemoglobin (g/dl), median (IQR)  9.9 (8.7, 11.3) 9.5 (8.6, 10.5) <0.001 
       < 8.0 307 (11) 102 (13) <0.001 
       8.0 – 9.99 1000 (37) 353 (44)  
       10.0 – 11.99 774 (29) 249 (31)  
       ≥12.0 447 (17) 34 (4)  
       Unknown 156 (6) 57 (7)  
Absolute Neutrophil Count (ANC) 

(x109/l), median (IQR) 

1603 (8000, 3300) 2730 (1700, 4241) <0.001 
       < 0.5  262 (10) 20 (3) <0.001 
       0-5 – 0.99  393 (15) 43 (5)  
       1.0 –  1.8 415 (15) 96 (12)  
       ≥ 1.8 940 (35) 410 (52)  
       Unknown 674 (25) 226 (28)  
Platelets (x109/l), median (IQR) 93 (48, 171) 261 (150, 378) <0.001 
        < 50 

      

639 (24) 41 (5) <0.001 
        50 – 100  668 (25) 60 (8)  
        100 – 149  410 (15) 76 (10)  
        150 – 449 662 (25) 422 (53)  
        ≥ 450 74 (3) 118 (15)  
        Unknown 231 (9) 78 (10)  
IPSS-R    
     Very Low 263 (10) 152 (19) <0.001 
     Low 610 (23) 352 (44)  
     Intermediate  531 (20) 86 (11)  
     High 391 (14) 45 (6)  
     Very High 320 (12) 9 (1)  
     Unknown 569 (21) 151 (19)  
IPSS-R Cytogenetic Risk    
     Very Good 79 (3) 38 (5) <0.001 
     Good 1681 (63) 608 (76)  
     Intermediate  322 (12) 93 (12)  
     Poor 154 (6) 14 (2)  
     Very Poor 271 (10) 7 (1)  

     Unknown 177 (7) 35 (4)  



 34 

Table 3. Proposed diagnostic criteria for the MDS with mutated SF3B1. 

Cytopenia defined by standard hematologic values 

Somatic SF3B1 mutation 

Isolated erythroid or multilineage dysplasia° 

Bone marrow blasts <5% and peripheral blood blasts<1% 

WHO criteria for MDS with isolated del(5q), myelodysplastic/myeloproliferative neoplasm with ring 

sideroblasts and thrombocytosis or other myelodysplastic/myeloproliferative neoplasms, and primary 

myelofibrosis or other myeloproliferative neoplasms are not met 

Normal karyotype or any cytogenetic abnormality other than del(5q); monosomy 7; inv(3) or abn. 

3q26, complex (≥3) 

Any additional somatically mutated gene other than RUNX1 and/or EZH2* 

°Ring sideroblasts are not required for the diagnosis. 

*Additional JAK2V617F, CALR, or MPL mutations strongly support the diagnosis of 

myelodysplastic/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis. 
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Table 4. Clinical and hematological features of 495 patients within the IWG cohort classified 

according to the proposed entity of MDS with mutated SF3B1  

 

Sex  

     Female 212 (43) 

     Male 283 (57) 

Age (yrs.) at Sample, median (range)  70 (11, 99) 

     < 40 0 (0) 

     40 – 49 yrs. 10 (2) 

     50 – 59 yrs. 50 (10) 

     60 – 69 yrs. 115 (23) 

     70 – 79 yrs.  236 (48) 

     80 – 89 yrs.  79 (16) 

     ≥ 90 yrs. 2 (<1) 

     Unknown 3 (1) 

WHO 2008  

     RARS 238 (48) 

     RA/RCUD 15 (3) 

     RCMD-RS 156 (32) 

     RCMD 17 (3) 

     Unknown 68 (14) 

IPSS-R  

     Very Low 130 (26) 

     Low 269 (54) 

     Intermediate  21 (4) 

     High 3 (1) 

     Very High 0 (0) 

     Unknown 72 (15) 

IPSS-R Cytogenetic Risk Group  

     Very Good 26 (5) 

     Good 415 (84) 

     Intermediate  54 (11) 

     Poor 0 (0) 

     Very Poor 0 (0) 

Hemoglobin (g/dl), median (IQR)  9.8 (8.7, 11.1) 

       < 8.0 (g/dl) 51 (10) 

       8.0 – 9.99 (g/dl) 216 (44) 

       10.0 – 11.99 (g/dl) 174 (35) 

       ≥12.0 (g/dl) 19 (4) 

       Unknown 35 (7) 

Absolute Neutrophil Count (ANC) (x109/l), median (IQR) 1887 (900, 3600) 

       < 0.5  4 (1) 

       0.5 – 0.99  14 (3) 

       1.0 – 1.8  49 (10) 

       ≥ 1.8  271 (55) 

       Unknown 157 (32) 

Platelets (x109/l), median (IQR) 115 (56, 238) 

        < 50  

      

12 (2) 

        50 – 100  12 (2) 

        100 – 149  49 (10) 

        150 – 449 290 (59) 

        ≥ 450 89 (18) 

        Unknown 43 (9) 
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Figure 1. Patterns of the mutations observed in MDS patients reported to the 

dataset of the International Working Group for MDS. A) Distribution of somatic 

lesions in the analyzed genes according to the WHO category. Each column represents 

an individual patient sample. B) Distribution of somatic lesions in the analyzed genes in 

patients with MDS-RS with or without SF3B1 mutation. 

 

Figure 2. Frequency of co-occurring or mutually exclusive mutated genes in SF3B1-

mutated or -unmutated MDS in the IWG Dataset. A) Most frequent co-occurring or 

mutually exclusive mutated genes in SF3B1-mutant MDS in the IWG Dataset. Maroon 

and navy bars represent relative frequencies (percentage) of mutated genes in SF3B1-

mutated and SF3B1-wild type MDS, respectively. Red or blue gene labels indicate 

significantly higher frequencies of the co-mutated gene in SF3B1-mutated or SF3B1-

wild type MDS, respectively (P values ranging from .019 to <.001). B) Most frequent co-

occurring or mutually exclusive mutated genes in SF3B1-wild type versus SF3B1-mutant 

MDS-RS in the IWG Dataset. Navy and maroon bars represent relative frequencies 

(percentage) of mutated genes in SF3B1-wild type and SF3B1-mutant MDS-RS, 

respectively. Blue or red gene labels indicate significantly higher frequencies of the co-

mutated gene in SF3B1-wild type or SF3B1-mutant MDS, respectively (P values ranging 

from .047 to .002). 

 

Figure 3. Tridimensional scatter plot of SF3B1-mutated and unmutated MDS with 

ring sideroblasts according to bone marrow dysplastic features. Red dots identify 

MDS associated with SF3B1 mutation, whereas blue dots identify MDS unmutated for 
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SF3B1. The degree of dysmyelopoiesis and dysmegakaryopoiesis are measured as 

percentage of lineage dysplastic cells.14 

 

Figure 4. Effect of current WHO classification criteria on overall survival of patients 

with SF3B1-mutated MDS. Plot A reports overall survival of patients with SF3B1-

mutated MDS according to the presence of single-lineage (black curve, n=267) or 

multi-lineage (red curve, n=171) dysplasia (P=0.4). Plot B reports overall survival of 

patients with SF3B1-mutated MDS according to bone marrow blasts lower (black curve, 

n=341) or equal/higher (red curve, n=85) than 5% (P<0.001). 

 

Figure 5. Overall survival of patients with MDS classified according to SF3B1 

mutation status. Plot A reports overall survival of the whole MDS population 

according to SF3B1 mutation status: SF3B1-mutated MDS (red curve, n=769) have a 

significantly longer survival compared with SF3B1-unmutated MDS (black curve, 

n=2555) (P<0.001). Plots B reports overall survival of SF3B1-mutated (red curve, n=267) 

and –unmutated (black curve, n=54) patients with RARS (P<.001). Plots C reports 

overall survival of SF3B1-mutated (red curve, n=171) and –unmutated (black curve, 

n=56) patients with RCMD-RS (P=.003). Plot D reports overall survival of patients with 

RARS or SF3B1-mutated RCUD according to SF3B1 mutation status (mutated SF3B1, 

red curve, n=287; unmutated, black curve, n=54) (P<.001). This group is overlapping 

the category of MDS-RS-SLD according to 2016 WHO criteria, except for comprising 

occasional patients with SF3B1-mutation and less than 5% RS. Plot E reports overall 

survival of patients with RCMD-RS or SF3B1-mutated RCMD according to SF3B1 
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mutation status (mutated SF3B1, red curve, n=189; unmutated, black curve, n=56) 

(P=.003). This group is overlapping the category of MDS-RS-MLD according to 2016 

WHO criteria, except for comprising occasional patients with SF3B1-mutation and less 

than 5% RS. Plot F reports overall survival of SF3B1-mutated (red curve, n=77) and –

unmutated patients (black curve, n=823) with MDS-EB (P=0.34). 

 

Figure 6. Overall survival of patients with SF3B1 mutant MDS according to 

additional somatic mutations. Plot A reports overall survival by isolated SF3B1 

mutation (n=201, black curve) versus SF3B1 mutation associated with additional 

somatic mutations within SF3B1-mutated MDS without excess blasts (SF3B1 plus one 

additional mutation, n=192, red curve; two additional mutations, n=66, green curve; 

three or more additional mutations, n=23, blue curve) (including patients sequenced 

for all of the following 15 genes: SF3B1, TET2, DNMT3A, SRSF2, ASXL1, RUNX1, TP53, 

EZH2, JAK2, U2AF1, IDH1, IDH2, CBL, NRAS, ETV6). Plot B and C report overall survival 

and cumulative incidence of AML evolution of SF3B1-mutated MDS without excess 

blasts according to RUNX1 mutation status (mutated, n=21, red curve; unmutated, 

n=505, black curve) (P<.001). Cumulative incidence of AML evolution was estimated 

with a competing risk approach, considering death for any cause as a competing event. 

Plot D overall survival of SF3B1-mutated MDS without excess blasts according to EZH2 

mutation status (mutated, n=20, red curve; unmutated, n=499, black curve) (P=.003). 

 

Figure 7. Survival and risk of leukemic evolution of patients classified within the 

proposed entity of MDS with mutated SF3B1. Plot A reports overall survival of 
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patients classified within the proposed entity of MDS with mutated SF3B1 (n=486). Plot 

B reports cumulative incidence of AML evolution of evaluable patients (n=52) classified 

within the proposed entity of MDS with mutated SF3B1. Cumulative incidence of AML 

evolution was estimated with a competing risk approach, considering death for any 

cause as a competing event. 
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