91 research outputs found

    Synthesis and Biological Characterization of a New Norbormide Derived Bodipy FL-Conjugated Fluorescent Probe for Cell Imaging

    Get PDF
    Background: Norbormide (NRB) is a selective rat toxicant endowed with vasoconstrictor activity confined to the rat peripheral arteries. In a recent work we used a fluorescent derivative of NRB (NRB-AF12), obtained by coupling the NBD fluorophore to the parent molecule via a linker, in order to gain information about the possible site of action of the unlabeled compound. We found that NRB-AF12 labeled intracellular organelles in both NRB-sensitive and -insensitive cells and we accordingly proposed its use as a scaffold for the development of a new class of fluorescent probes. In this study, we examined the fluorescent properties of a BODIPY FL-conjugated NRB probe (MC009) developed: (A) to verify if NRB distribution could be influenced by the attached fluorophore; (B) to improve the fluorescent performance of NRB-AF12. Methods: MC009 characteristics were investigated by confocal fluorescence microscopy, in freshly isolated rat caudal artery myocytes (FIRCAM) and in LX2 cells, representative of NRB-sensitive and insensitive cells, respectively. Main results: In both FIRCAM and LX2 cells MC009 stained endoplasmic reticulum, mitochondria, Golgi apparatus and lipid droplets, revealing the same intracellular distribution as NRB-AF12, and, at the same time, had both improved photostability and gave a more intense fluorescent signal at lower concentrations than was possible with NRB-AF12, which resulted in a better and finer visualization of intracellular structures. Furthermore, MC009 was effective in cellular labeling in both living and fixed cells. At the concentration used to stain the cells, MC009 did not show any cytotoxic effect and did not affect the regular progression of cell cycle and division. Conclusions: This study demonstrates that the distribution of fluorescently labeled NRB is not affected by the type of fluorophore attached to the parent compound, supporting the idea that the localization of the fluorescent derivatives may reasonably reflect that of the parent compound. In addition, we observed a marked improvement in the fluorescent properties of BODIPY FL-conjugated NRB (MC009) over its NBD-derived counterpart (NRB-AF12), confirming NRB as a scaffold for the development of new, high performance, non-toxic fluorescent probes for the labeling of intracellular structures in both living and fixed cells

    Live applications of norbormide-based fluorescent probes in Drosophila melanogaster

    Get PDF
    In this study we investigated the performance of two norbormide (NRB)-derived fluorescent probes, NRBMC009 (green) and NRBZLW0047 (red), on dissected, living larvae of Drosophila, to verify their potential application in confocal microscopy imaging in vivo. To this end, larval tissues were exposed to NRB probes alone or in combination with other commercial dyes or GFP-tagged protein markers. Both probes were rapidly internalized by most tissues (except the central nervous system) allowing each organ in the microscope field to be readily distinguished at low magnification. At the cellular level, the probes showed a very similar distribution (except for fat bodies), defined by loss of signal in the nucleus and plasma membrane, and a preferential localization to endoplasmic reticulum (ER) and mitochondria. They also recognized ER and mitochondrial phenotypes in the skeletal muscles of fruit fly models that had loss of function mutations in the atlastin and mitofusin genes, suggesting NRBMC009 and NRBZLW0047 as potentially useful in vivo screening tools for characterizing ER and mitochondria morphological alterations. Feeding of larvae and adult Drosophilae with the NRB-derived dyes led to staining of the gut and its epithelial cells, revealing a potential role in food intake assays. In addition, when flies were exposed to either dye over their entire life cycle no apparent functional or morphological abnormalities were detected. Rapid internalization, a bright signal, a compatibility with other available fluorescent probes and GFP-tagged protein markers, and a lack of toxicity make NRBZLW0047 and, particularly, NRBMC009 one of the most highly performing fluorescent probes available for in vivo microscopy studies and food intake assay in Drosophila

    The Selective Rat Toxicant Norbormide Blocks KATP Channels in Smooth Muscle Cells But Not in Insulin-Secreting Cells

    Get PDF
    Norbormide is a toxicant selective for rats to which it induces a widespread vasoconstriction. In a recent paper, we hypothesized a role of ATP-sensitive potassium (KATP) channels in norbormide-induced vasoconstriction. The current study was undertaken to verify this hypothesis by comparing the effects of norbormide with those of glibenclamide, a known KATP channel blocker. The whole-cell patch-clamp method was used to record KATP currents in myocytes freshly isolated from the rat and mouse caudal artery and from the rat gastric fundus, as well as in insulin-secreting pancreatic beta cells (INS-1 cells). Smooth muscle contractile function was assessed on either rat caudal artery rings or gastric fundus strips. Molecular modeling and docking simulation to KATP channel proteins were investigated in silico. Both norbormide (a racemic mixture of endo and exo isomers) and glibenclamide inhibited KATP currents in rat and mouse caudal artery myocytes, as well as in gastric fundus smooth muscle cells. In rat INS-1 cells, only glibenclamide blocked KATP channels, whereas norbormide was ineffective. The inhibitory effect of norbormide in rat caudal artery myocytes was not stereo-specific as both the endo isomers (active as vasoconstrictor) and the exo isomers (inactive as vasoconstrictor) had similar inhibitory activity. In rat caudal artery rings, norbormide-induced contraction was partially reverted by the KATP channel opener pinacidil. Computational approaches indicated the SUR subunit of KATP channels as the binding site for norbormide. KATP channel inhibition may play a role in norbormide-induced vasoconstriction, but does not explain the species selectivity, tissue selectivity, and stereoselectivity of its constricting activity. The lack of effect in INS-1 cells suggests a potential selectivity of norbormide for smooth muscle KATP channels

    Distinct Patterns of Internalization of Different Calcitonin GeneRelated Peptide Receptors

    Get PDF
    Calcitonin gene-related peptide (CGRP) is a neuropeptide that is involved in the transmission of pain. Drugs targeting CGRP or a CGRP receptor are efficacious in the treatment of migraine. The canonical CGRP receptor is a complex of a G protein-coupled receptor, the calcitonin-like receptor (CLR), with an accessory protein, receptor activity-modifying protein 1 (RAMP1). A second receptor, the AMY1 receptor, a complex of the calcitonin receptor with RAMP1, is a dual high-affinity receptor for CGRP and amylin. Receptor regulatory processes, such as internalization, are crucial for controlling peptide and drug responsiveness. Given the importance of CGRP receptor activity in migraine we compared the internalization profiles of both receptors for CGRP using novel fluorescent probes and a combination of live cell imaging, fixed cell imaging, and ELISA. This revealed stark differences in the regulation of each receptor with the AMY1 receptor unexpectedly showing little internalization.Peer Reviewe

    Frailty and socioeconomic position: a systematic review of observational studies

    Get PDF
    Background: Frailty, an age-related state of reduced physiological reserve, is often associated with lower socio-economic position (SEP). This systematic review synthesised observational studies assessing (i) the association between SEP and frailty prevalence; (ii) how changes in frailty status over time vary by SEP; and (iii) whether the association between frailty and clinical outcomes is modified by SEP. Methods: We searched three electronic databases from 2001 to 2023. We included observational studies measuring early-, mid-, and late-life indicators of SEP (education, income, wealth, housing, occupation, and area-based measures of multiple deprivation) and frailty (assessed using any validated measure). Screening and extraction were performed in duplicate. Findings were synthesised using narrative synthesis. Results: We included 383 studies reporting findings from 265 independent samples/cohorts across 64 countries. Lower SEP was associated with higher frailty prevalence across all indicators (childhood deprivation 7/8 studies, education 227/248, occupation 28/32, housing 8/9, income 98/108, wealth 39/44 and area-based deprivation 32/34). Lower SEP was also associated with higher frailty incidence (27/30), with greater odds of transitioning towards a more severe frailty state (35/43), lower odds of frailty reversion (7/11), and (in some studies) with more rapid accumulation of deficits (7/15). The relationship between frailty and mortality was not modified by SEP. Interpretation: Preventative measures across multiple levels of individual and structural inequality are likely to be required to reduce the rising levels of frailty. Resourcing of interventions and services to support people living with frailty should be proportionate to needs in the population to avoid widening existing health inequalities

    An NBD derivative of the selective rat toxicant norbormide as a new probe for living cell imaging

    Get PDF
    Norbormide (NRB) is a unique compound that acts directly on rat vascular myocytes to trigger a contractile process, through an as yet unknown mechanism, which results in the selective contraction of rat peripheral arteries. To gain insight into the mechanisms involved in NRB rat-selective activity, we investigated the subcellular distribution of NRB-AF12, a nitrobenzoxadiazole (NBD)-derivative of NRB, in living NRB-sensitive and NRB-insensitive cells. In both cell types, NRB-AF12 localized to the endoplasmic reticulum (ER), Golgi apparatus, mitochondria, lysosomes, and endosomes; however, in NRB-sensitive cells, the fluorescence also extended to the plasma membrane. NRB-AF12 was rapidly internalized into the cells, could easily be washed out and then reloaded back into the same cells, all with a high degree of reproducibility. Cells exposed for 24 h to NRB-AF12 did not show apparent signs of toxicity, even at concentrations of the dye (10 ÎŒM) much higher than those required for fluorescence labeling (500 ηM). The distribution pattern of NRB-AF12 fluorescence was near identical to that of ER-TrackerÂź (Er-Tr), a fluorescent derivative of glibenclamide, a known KATP channel blocker. Displacement tests did not demonstrate, but at the same time did not rule out the possibility of a common target for ER-Tr, NRB-AF12, NRB, and glibenclamide. On the basis of these results we hypothesize a common target site for NRB-AF12 and ER-Tr, and a similar target profile for NRB and glibenclamide, and propose NRB-AF12 as an alternative fluorescence probe to ER-Tracker. Furthermore, NRB-based fluorescence derivatives could be designed to selectively label single cellular structures

    Global urban environmental change drives adaptation in white clover.

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    The vibrational response of and the acoustic radiation from thin-walled pipes, excited by random fluctuating pressure fields / by D.C. Rennison

    Get PDF
    xi, 265 leaves : photos., diags ; 30 cm.Thesis (Ph.D.) -- University of Adelaide, Dept. of Mechanical Engineering, 197
    • 

    corecore