162 research outputs found

    Isotropy in Group Cohomology

    Get PDF
    The analogue of Lagrangians for symplectic forms over finite groups is studied, motivated by the fact that symplectic G-forms with a normal Lagrangian N<G are in one-to-one correspondence, up to inflation, with bijective 1-cocycle data on the quotients G/N. This yields a method to construct groups of central type from such quotients, known as Involutive Yang-Baxter groups. Another motivation for the search of normal Lagrangians comes from a non-commutative generalization of Heisenberg liftings which require normality. Although it is true that symplectic forms over finite nilpotent groups always admit Lagrangians, we exhibit an example where none of these subgroups is normal. However, we prove that symplectic forms over nilpotent groups always admit normal Lagrangians if all their p-Sylow subgroups are of order less than p^8

    R & D in education: the case of the laboratory school

    Full text link
    This symposium presents ten years of an Israeli laboratory school, which was established on research and development (R & D) principles. First, David Chen presents four major requirements for R&D strategy: new theoretical foundation, educational research, laboratories schools and diffusion mechanisms. Second, Nir Chen presents the architectural perspective and describes ways by which school building promotes new pedagogy. Third, Yafa Ben-Amy explains how the school and, especially the "home" - the basic organizational unit, work. Finally, Dorit Tubin shows some of the evidence with regards to the schools succes

    Precursors prior to Type IIn supernova explosions are common: precursor rates, properties, and correlations

    Get PDF
    There is a growing number of supernovae (SNe), mainly of Type IIn, which present an outburst prior to their presumably final explosion. These precursors may affect the SN display, and are likely related to some poorly charted phenomena in the final stages of stellar evolution. Here we present a sample of 16 SNe IIn for which we have Palomar Transient Factory (PTF) observations obtained prior to the SN explosion. By coadding these images taken prior to the explosion in time bins, we search for precursor events. We find five Type IIn SNe that likely have at least one possible precursor event, three of which are reported here for the first time. For each SN we calculate the control time. Based on this analysis we find that precursor events among SNe IIn are common: at the one-sided 99% confidence level, more than 50% of SNe IIn have at least one pre-explosion outburst that is brighter than absolute magnitude -14, taking place up to 1/3 yr prior to the SN explosion. The average rate of such precursor events during the year prior to the SN explosion is likely larger than one per year, and fainter precursors are possibly even more common. We also find possible correlations between the integrated luminosity of the precursor, and the SN total radiated energy, peak luminosity, and rise time. These correlations are expected if the precursors are mass-ejection events, and the early-time light curve of these SNe is powered by interaction of the SN shock and ejecta with optically thick circumstellar material.Comment: 15 pages, 20 figures, submitted to Ap

    Comparative effectiveness of intensity modulated radiation therapy to 3-dimensional conformal radiation in locally advanced lung cancer: pathological and clinical outcomes.

    Get PDF
    OBJECTIVE: Intensity-modulated radiotherapy (IMRT) has better normal-tissue sparing compared with 3-dimensional conformal radiation (3DCRT). We sought to assess the impact of radiation technique on pathological and clinical outcomes in locally advanced non-small cell lung cancer (LANSCLC) treated with a trimodality strategy. METHODS: Retrospective review of LANSCLC patients treated from August 2012 to August 2018 at Sheba Medical Center, Israel. The trimodality strategy consisted of concomitant chemoradiation to 60 Gray (Gy) followed by completion surgery. The planning target volume (PTV) was defined by co-registered PET/CT. Here we compare the pathological regression, surgical margin status, local control rates (LC), disease free (DFS) and overall survival (OS) between 3DCRT and IMRT. RESULTS: Our cohort consisted of 74 patients with mean age 62.9 years, male in 51/74 (69%), adenocarcinoma in 46/74 (62.1%), stage 3 in 59/74 (79.7%) and chemotherapy in 72/74 (97.3%). Radiation mean dose: 59.2 Gy (SD ± 3.8). Radiation technique : 3DCRT in 51/74 (68.9%), IMRT in 23/74 (31%). Other variables were similar between groups.Major pathological response (including pathological complete response or less than 10% residual tumor cells) was similar: 32/51 (62.7%) in 3DCRT and 15/23 (65.2%) in IMRT, p=0.83. Pathological complete response (pCR) rates were similar: 17/51 (33.3%) in 3DCRT and 8/23 (34.8%) in IMRT, p=0.9. Surgical margins were negative in 46/51 (90.1%) in 3DCRT vs. 17/19 (89.4%) in IMRT (p=1.0).The 2-year LC rates were 81.6% (95% CI 69-89.4%); DFS 58.3% (95% CI 45.5-69%) and 3-year OS 70% (95% CI57-80%). Comparing radiation techniques, there were no significant differences in LC (p=0.94), DFS (p=0.33) and OS (p=0.72). CONCLUSION: When used to treat LANSCLC in the neoadjuvant setting, both IMRT and 3DCRT produce comparable pathological and clinical outcomes. ADVANCES IN KNOWLEDGE: This study validates the real-world effectiveness of IMRT compared to 3DCRT

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    The scientific payload of the Ultraviolet Transient Astronomy Satellite (ULTRASAT)

    Full text link
    The Ultraviolet Transient Astronomy Satellite (ULTRASAT) is a space-borne near UV telescope with an unprecedented large field of view (200 sq. deg.). The mission, led by the Weizmann Institute of Science and the Israel Space Agency in collaboration with DESY (Helmholtz association, Germany) and NASA (USA), is fully funded and expected to be launched to a geostationary transfer orbit in Q2/3 of 2025. With a grasp 300 times larger than GALEX, the most sensitive UV satellite to date, ULTRASAT will revolutionize our understanding of the hot transient universe, as well as of flaring galactic sources. We describe the mission payload, the optical design and the choice of materials allowing us to achieve a point spread function of ~10arcsec across the FoV, and the detector assembly. We detail the mitigation techniques implemented to suppress out-of-band flux and reduce stray light, detector properties including measured quantum efficiency of scout (prototype) detectors, and expected performance (limiting magnitude) for various objects.Comment: Presented in the SPIE Astronomical Telescopes + Instrumentation 202

    Improving the predictive potential of diffusion MRI in schizophrenia using normative models-Towards subject-level classification.

    Get PDF
    Diffusion MRI studies consistently report group differences in white matter between individuals diagnosed with schizophrenia and healthy controls. Nevertheless, the abnormalities found at the group-level are often not observed at the individual level. Among the different approaches aiming to study white matter abnormalities at the subject level, normative modeling analysis takes a step towards subject-level predictions by identifying affected brain locations in individual subjects based on extreme deviations from a normative range. Here, we leveraged a large harmonized diffusion MRI dataset from 512 healthy controls and 601 individuals diagnosed with schizophrenia, to study whether normative modeling can improve subject-level predictions from a binary classifier. To this aim, individual deviations from a normative model of standard (fractional anisotropy) and advanced (free-water) dMRI measures, were calculated by means of age and sex-adjusted z-scores relative to control data, in 18 white matter regions. Even though larger effect sizes are found when testing for group differences in z-scores than are found with raw values (p < .001), predictions based on summary z-score measures achieved low predictive power (AUC < 0.63). Instead, we find that combining information from the different white matter tracts, while using multiple imaging measures simultaneously, improves prediction performance (the best predictor achieved AUC = 0.726). Our findings suggest that extreme deviations from a normative model are not optimal features for prediction. However, including the complete distribution of deviations across multiple imaging measures improves prediction, and could aid in subject-level classification

    Discovery of microRNAs and other small RNAs in solid tumors

    Get PDF
    MicroRNAs (miRNAs) are ∼22-nt long, non-coding RNAs that regulate gene silencing. It is known that many human miRNAs are deregulated in numerous types of tumors. Here we report the sequencing of small RNAs (17–25 nt) from 23 breast, bladder, colon and lung tumor samples using high throughput sequencing. We identified 49 novel miRNA and miR-sized small RNAs. We further validated the expression of 10 novel small RNAs in 31 different types of blood, normal and tumor tissue samples using two independent platforms, namely microarray and RT–PCR. Some of the novel sequences show a large difference in expression between tumor and tumor-adjacent tissues, between different tumor stages, or between different tumor types. We also report the identification of novel small RNA classes in human: highly expressed small RNA derived from Y-RNA and endogenous siRNA. Finally, we identified dozens of new miRNA sequence variants that demonstrate the existence of miRNA-related SNP or post-transcriptional modifications. Our work extends the current knowledge of the tumor small RNA transcriptome and provides novel candidates for molecular biomarkers and drug targets
    corecore