7,650 research outputs found

    Investigation of line-of-sight propagation in dense atmosphere, phase 2 Final report, Jun. 1970 - Feb. 1971

    Get PDF
    Effect of microwave absorption and decimetric radio noise in Jovian atmospheres on radio communication in 1 to 10 GHz frequency ban

    Cylindrical Algebraic Sub-Decompositions

    Full text link
    Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all the information needed to specify a solution for a given problem. We define two new types of sub-CAD: variety sub-CADs which are those cells in a CAD lying on a designated variety; and layered sub-CADs which have only those cells of dimension higher than a specified value. We present algorithms to produce these and describe how the two approaches may be combined with each other and the recent theory of truth-table invariant CAD. We give a complexity analysis showing that these techniques can offer substantial theoretical savings, which is supported by experimentation using an implementation in Maple.Comment: 26 page

    Heavy metal toxicity as a kill mechanism in impact caused mass extinctions

    Get PDF
    Heavy metals that are known to be toxic exist in carbonaceous chrondrites at abundances considerably in excess to that of the terrestrial crust. An impactor of relatively undifferentiated cosmic matter would inject into the terrestrial environment large quantities of toxic elements. The abundances of toxic metals found in the Allende CV carbonaceous chondrite and the ratio of meteoritic abundance to crustal abundance are: Cr, 3630 PPM, 30X; Co, 662 PPM, 23X; ni, 13300 PPm, 134X; se, 8.2 PPM, 164X; Os, 0.828 PPM, 166X. The resulting areal density for global dispersal of impactor derived heavy metals and their dilution with terrestrial ejecta are important factors in the determination of the significance of impactor heavy metal toxicity as a kill mechanism in impact caused mass extinctions. A 10 km-diameter asteroid having a density of 3 gram per cu cm would yield a global areal density of impact dispersed chondritic material of 3 kg per square meter. The present areal density of living matter on the terrestrial land surface is 1 kg per square meter. Dilution of impactor material with terrestrial ejecta is determined by energetics, with the mass of ejecta estimated to be in the range of 10 to 100 times that of the mass of the impactor. Because a pelagic impact would be the most likely case, the result would be a heavy metal rainout

    Composite fermion model for entanglement spectrum of fractional quantum Hall states

    Get PDF
    We show that the entanglement spectrum associated with a certain class of strongly correlated many-body states --- the wave functions proposed by Laughlin and Jain to describe the fractional quantum Hall effect --- can be very well described in terms of a simple model of non-interacting (or weakly interacting) composite fermions.Comment: 6 pages, 2 figure

    Non‐Homogeneous Cubic Equations

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135443/1/jlms0657.pd

    Characterizing the Rigidly Rotating Magnetosphere Stars HD 345439 and HD 23478

    Get PDF
    The SDSS III APOGEE survey recently identified two new σ\sigma Ori E type candidates, HD 345439 and HD 23478, which are a rare subset of rapidly rotating massive stars whose large (kGauss) magnetic fields confine circumstellar material around these systems. Our analysis of multi-epoch photometric observations of HD 345439 from the KELT, SuperWASP, and ASAS surveys reveals the presence of a \sim0.7701 day period in each dataset, suggesting the system is amongst the faster known σ\sigma Ori E analogs. We also see clear evidence that the strength of H-alpha, H I Brackett series lines, and He I lines also vary on a \sim0.7701 day period from our analysis of multi-epoch, multi-wavelength spectroscopic monitoring of the system from the APO 3.5m telescope. We trace the evolution of select emission line profiles in the system, and observe coherent line profile variability in both optical and infrared H I lines, as expected for rigidly rotating magnetosphere stars. We also analyze the evolution of the H I Br-11 line strength and line profile in multi-epoch observations of HD 23478 from the SDSS-III APOGEE instrument. The observed periodic behavior is consistent with that recently reported by Sikora and collaborators in optical spectra.Comment: Accepted in ApJ

    A Universal Machine for Biform Theory Graphs

    Full text link
    Broadly speaking, there are two kinds of semantics-aware assistant systems for mathematics: proof assistants express the semantic in logic and emphasize deduction, and computer algebra systems express the semantics in programming languages and emphasize computation. Combining the complementary strengths of both approaches while mending their complementary weaknesses has been an important goal of the mechanized mathematics community for some time. We pick up on the idea of biform theories and interpret it in the MMTt/OMDoc framework which introduced the foundations-as-theories approach, and can thus represent both logics and programming languages as theories. This yields a formal, modular framework of biform theory graphs which mixes specifications and implementations sharing the module system and typing information. We present automated knowledge management work flows that interface to existing specification/programming tools and enable an OpenMath Machine, that operationalizes biform theories, evaluating expressions by exhaustively applying the implementations of the respective operators. We evaluate the new biform framework by adding implementations to the OpenMath standard content dictionaries.Comment: Conferences on Intelligent Computer Mathematics, CICM 2013 The final publication is available at http://link.springer.com

    A people-oriented paradigm for smart cities

    Get PDF
    Most works in the literature agree on considering the Internet of Things (IoT) as the base technology to collect information related to smart cities. This information is usually offered as open data for its analysis, and to elaborate statistics or provide services which improve the management of the city, making it more efficient and more comfortable to live in. However, it is not possible to actually improve the quality of life of smart cities’ inhabitants if there is no direct information about them and their experiences. To address this problem, we propose using a social and mobile computation model, called the Internet of People (IoP) which empowers smartphones to recollect information about their users, analyze it to obtain knowledge about their habits, and provide this knowledge as a service creating a collaborative information network. Combining IoT and IoP, we allow the smart city to dynamically adapt its services to the needs of its citizens, promoting their welfare as the main objective of the city.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Truth table invariant cylindrical algebraic decomposition

    Get PDF
    When using cylindrical algebraic decomposition (CAD) to solve a problem with respect to a set of polynomials, it is likely not the signs of those polynomials that are of paramount importance but rather the truth values of certain quantifier free formulae involving them. This observation motivates our article and definition of a Truth Table Invariant CAD (TTICAD). In ISSAC 2013 the current authors presented an algorithm that can efficiently and directly construct a TTICAD for a list of formulae in which each has an equational constraint. This was achieved by generalising McCallum's theory of reduced projection operators. In this paper we present an extended version of our theory which can be applied to an arbitrary list of formulae, achieving savings if at least one has an equational constraint. We also explain how the theory of reduced projection operators can allow for further improvements to the lifting phase of CAD algorithms, even in the context of a single equational constraint. The algorithm is implemented fully in Maple and we present both promising results from experimentation and a complexity analysis showing the benefits of our contributions.Comment: 40 page
    corecore