
http://curve.coventry.ac.uk/open  
 

 

 

Truth table invariant cylindrical algebraic 
decomposition 
 
Bradford, R. , Davenport, J. H. , England, M. , McCallum, S. and 
Wilson, D. 
 
Published PDF deposited in Curve February 2016 
 
Original citation:  
Bradford, R. , Davenport, J. H. , England, M. , McCallum, S. and Wilson, D. (2016) Truth table 
invariant cylindrical algebraic decomposition . Journal of Symbolic Computation, volume 76 : 
1-35 
 
URL: http://dx.doi.org/10.1016/j.jsc.2015.11.002 
DOI: 10.1016/j.jsc.2015.11.002 
ISSN: 0747-7171 
 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders. 
 

CURVE is the Institutional Repository for Coventry University 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228141682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://curve.coventry.ac.uk/open
http://dx.doi.org/10.1016/j.jsc.2015.11.002


Journal of Symbolic Computation 76 (2016) 1–35
Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Truth table invariant cylindrical algebraic 

decomposition ✩

Russell Bradford a, James H. Davenport a, Matthew England b, 
Scott McCallum c, David Wilson a

a Department of Computer Science, University of Bath, Bath, BA2 7AY, UK
b School of Computing, Electronics and Maths, Faculty of Engineering, Environment and Computing, 
Coventry University, Coventry, CV1 5FB, UK
c Department of Computing, Macquarie University, NSW 2109, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 December 2014
Accepted 21 October 2015
Available online 4 November 2015

MSC:
68W30
03C10

Keywords:
Cylindrical algebraic decomposition
Equational constraint

When using cylindrical algebraic decomposition (CAD) to solve a 
problem with respect to a set of polynomials, it is likely not the 
signs of those polynomials that are of paramount importance but 
rather the truth values of certain quantifier free formulae involving 
them. This observation motivates our article and definition of a 
Truth Table Invariant CAD (TTICAD).
In ISSAC 2013 the current authors presented an algorithm that can 
efficiently and directly construct a TTICAD for a list of formulae 
in which each has an equational constraint. This was achieved by 
generalising McCallum’s theory of reduced projection operators. In 
this paper we present an extended version of our theory which 
can be applied to an arbitrary list of formulae, achieving savings 
if at least one has an equational constraint. We also explain how 
the theory of reduced projection operators can allow for further 
improvements to the lifting phase of CAD algorithms, even in the 
context of a single equational constraint.
The algorithm is implemented fully in Maple and we present both 
promising results from experimentation and a complexity analysis 
showing the benefits of our contributions.

© 2015 The Authors. Published by Elsevier Ltd. This is an open 
access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

✩ This work was supported by EPSRC grant EP/J003247/1.
E-mail addresses: R.J.Bradford@bath.ac.uk (R. Bradford), J.H.Davenport@bath.ac.uk (J.H. Davenport), 

Matthew.England@coventry.ac.uk (M. England), Scott.McCallum@mq.edu.au (S. McCallum), David.John.Wilson@me.com
(D. Wilson).
http://dx.doi.org/10.1016/j.jsc.2015.11.002
0747-7171/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jsc.2015.11.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
http://creativecommons.org/licenses/by/4.0/
mailto:R.J.Bradford@bath.ac.uk
mailto:J.H.Davenport@bath.ac.uk
mailto:Matthew.England@coventry.ac.uk
mailto:Scott.McCallum@mq.edu.au
mailto:David.John.Wilson@me.com
http://dx.doi.org/10.1016/j.jsc.2015.11.002
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2015.11.002&domain=pdf


2 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
1. Introduction

A cylindrical algebraic decomposition (CAD) is a decomposition of Rn into cells arranged cylindrically 
(meaning the projections of any pair of cells are either equal or disjoint) each of which is (semi-)alge-
braic (describable using polynomial relations). CAD is a key tool in real algebraic geometry, offering a 
method for quantifier elimination in real closed fields. Applications include the derivation of optimal 
numerical schemes (Erascu and Hong, 2014), parametric optimisation (Fotiou et al., 2005), robot mo-
tion planning (Schwartz and Sharir, 1983), epidemic modelling (Brown et al., 2006), theorem proving 
(Paulson, 2012) and programming with complex functions (Davenport et al., 2012).

Traditionally CADs are produced sign-invariant to a given set of polynomials (the signs of the poly-
nomials do not vary within each cell). However, this gives far more information than required for 
most applications. Usually a more appropriate object is a truth-invariant CAD (the truth of a logical 
formula does not vary within cells).

In this paper we generalise to define truth table invariant CADs (the truth values of a list of 
quantifier-free formulae do not vary within cells) and give an algorithm to compute these directly. 
This can be a tool to efficiently produce a truth-invariant CAD for a parent formula (built from the 
input list), or indeed the required object for solving a problem involving the input list. Examples of 
both such uses are provided following the formal definition in Section 1.2. We continue the intro-
duction with some background on CAD, before defining our object of study and introducing some 
examples to demonstrate our ideas which we will return to throughout the paper. We then conclude 
the introduction by clarifying the contributions and plan of this paper.

1.1. Background on CAD

A Tarski formula F (x1, . . . , xn) is a Boolean combination (∧, ∨, ¬, →) of statements about the signs, 
(= 0, > 0, < 0, but therefore �= 0, ≥ 0, ≤ 0 as well), of certain polynomials f i(x1, . . . , xn) with integer 
coefficients. Such statements may involve the universal or existential quantifiers (∀, ∃). We denote by 
QFF a quantifier-free Tarski formula.

Given a quantified Tarski formula

Q k+1xk+1 . . . Q nxn F (x1, . . . , xn) (1)

(where Q i ∈ {∀, ∃} and F is a QFF) the quantifier elimination problem is to produce ψ(x1, . . . , xk), an 
equivalent QFF to (1).

Collins developed CAD as a tool for quantifier elimination over the reals. He proposed to decom-
pose Rn cylindrically such that each cell was sign-invariant for all polynomials f i used to define F . 
Then ψ would be the disjunction of the defining formulae of those cells ci in Rk such that (1) was 
true over the whole of ci , which due to sign-invariance is the same as saying that (1) is true at any 
one sample point of ci .

A complete description of Collins’ original algorithm is given by Arnon et al. (1984a). The first 
phase, projection, applies a projection operator repeatedly to a set of polynomials, each time producing 
another set in one fewer variables. Together these sets contain the projection polynomials. These are 
used in the second phase, lifting, to build the CAD incrementally. First R is decomposed into cells 
which are points and intervals corresponding to the real roots of the univariate polynomials. Then 
R

2 is decomposed by repeating the process over each cell in R using the bivariate polynomials at a 
sample point. Over each cell there are sections (where a polynomial vanishes) and sectors (the regions 
between) which together form a stack. Taking the union of these stacks gives the CAD of R2. This is 
repeated until a CAD of Rn is produced. At each stage the cells are represented by (at least) a sample 
point and an index: a list of integers corresponding to the ordered roots of the projection polynomials 
which locates the cell in the CAD.

To conclude that a CAD produced in this way is sign-invariant we need delineability. A polynomial 
is delineable in a cell if the portion of its zero set in the cell consists of disjoint sections. A set of 
polynomials are delineable in a cell if each is delineable and the sections of different polynomials in 
the cell are either identical or disjoint. The projection operator used must be defined so that over 



R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 3
each cell of a sign-invariant CAD for projection polynomials in r variables (the word over meaning we 
are now talking about an (r + 1)-dim space) the polynomials in r + 1 variables are delineable.

The output of this and subsequent CAD algorithms (including the one presented in this paper) 
depends heavily on the variable ordering. We usually work with polynomials in Z[x] = Z[x1, . . . , xn]
with the variables, x, in ascending order (so we first project with respect to xn and continue to reach 
univariate polynomials in x1). The main variable of a polynomial (mvar) is the greatest variable present 
with respect to the ordering.

CAD has doubly exponential complexity in the number of variables (Brown and Davenport, 2007;
Davenport and Heintz, 1988). There now exist algorithms with better complexity for some CAD ap-
plications (see for example Basu et al., 1996) but CAD implementations often remain the best general 
purpose approach. There have been many developments to the theory since Collin’s treatment, in-
cluding the following:

• Improvements to the projection operator (Hong, 1990; McCallum, 1988, 1998; Brown, 2001; Han 
et al., 2014), reducing the number of projection polynomials computed.

• Algorithms to identify the adjacency of cells in a CAD (Arnon et al., 1984b, 1988) and following 
from this the idea of clustering (Arnon, 1988) to minimise the lifting.

• Partial CAD, introduced by Collins and Hong (1991), where the structure of F is used to lift less 
of the decomposition of Rk to Rn , if it is sufficient to deduce ψ .

• The theory of equational constraints (McCallum, 1999, 2001; Brown and McCallum, 2005) also 
aiming to deduce ψ itself, this time using more efficient projections.

• The use of certified numerics in the lifting phase to minimise the amount of symbolic computa-
tion required (Strzeboński, 2006; Iwane et al., 2009).

• New approaches which break with the normal projection and lifting model: local projection 
(Strzeboński, 2014), the building of single CAD cells (Brown, 2013; Jovanovic and de Moura, 2012)
and CAD via triangular decomposition (Chen et al., 2009b). The latter is now used for the CAD 
command built into Maple, and works by first creating a cylindrical decomposition of complex 
space.

1.2. TTICAD

Brown (1998) defined a truth-invariant CAD as one for which a formula had invariant truth value on 
each cell. Given a QFF, a sign-invariant CAD for the defining polynomials is trivially truth-invariant. 
Brown considered the refinement of sign-invariant CADs whilst maintaining truth-invariance, while 
some of the developments listed above can be viewed as methods to produce truth-invariant CADs 
directly. We define a new but related type of CAD, the topic of this paper.

Definition 1. Let {φi}t
i=1 refer to a list of QFFs. We say a cylindrical algebraic decomposition D is a 

Truth Table Invariant CAD for the QFFs (TTICAD) if the Boolean value of each φi is constant (either true 
or false) on each cell of D.

A sign-invariant CAD for all polynomials occurring in a list of formulae would clearly be a TTICAD 
for the list. However, we aim to produce smaller TTICADs for many such lists. We will achieve this by 
utilising the presence of equational constraints, a technique first suggested by Collins (1998) with key 
theory developed by McCallum (1999).

Definition 2. Suppose some quantified formula is given:

φ∗ = (Q k+1xk+1) · · · (Q nxn)φ(x)

where the Q i are quantifiers and φ is quantifier free. An equation f = 0 is an equational constraint
(EC) of φ∗ if f = 0 is logically implied by φ (the quantifier-free part of φ∗). Such a constraint may be 
either explicit (an atom of the formula) or otherwise implicit.



4 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
In Sections 3 and 4 we will describe how TTICADs can be produced efficiently when there are ECs 
present in the list of formulae. There are two reasons to use this theory.

(1) As a tool to build a truth-invariant CAD efficiently: If a parent formula φ∗ is built from the formulae 
{φi} then any TTICAD for {φi} is also truth-invariant for φ∗ .
We note that for such a formula a TTICAD may need to contain more cells than a truth-invariant 
CAD. For example, consider a cell in a truth-invariant CAD for φ∗ = φ1 ∨ φ2 within which φ1 is 
always true. If φ2 changed truth value in such a cell then it would need to be split in order to 
achieve a TTICAD, but this is unnecessary for a truth-invariant CAD of φ∗ .
Nevertheless, we find that our TTICAD theory is often able to produce smaller truth-invariant 
CADs than any other available approach. We demonstrate the savings offered via worked exam-
ples introduced in the next subsection.

(2) When given a problem for which truth table invariance is required: That is, a problem for which the 
list of formulae are not derived from a larger parent formula and thus a truth-invariant CAD for 
their disjunction may not suffice.
For example, decomposing complex space according to a set of branch cuts for the purpose of 
algebraic simplification (Bradford and Davenport, 2002; Phisanbut et al., 2010). Here the idea is to 
represent each branch cut as a semi-algebraic set to give input admissible to CAD (recent progress 
on this has been described by England et al., 2013). Then a TTICAD for the list of formulae these 
sets define provides the necessary decomposition. Example 33 is from this class.

1.3. Worked examples

To demonstrate our ideas we will provide details for two worked examples. Assume we have 
the variable ordering x ≺ y (meaning 1-dimensional CADs are with respect to x) and consider the 
following polynomials, graphed in Fig. 1.

f1 := x2 + y2 − 1 g1 := xy − 1
4

f2 := (x − 4)2 + (y − 1)2 − 1 g2 := (x − 4)(y − 1) − 1
4

Suppose we wish to find the regions of R2 where the following formula is true:

� := ( f1 = 0 ∧ g1 < 0) ∨ ( f2 = 0 ∧ g2 < 0) . (2)

Both Qepcad (Brown, 2003) and Maple 16 (Chen et al., 2009b) produce a sign-invariant CAD for the 
polynomials with 317 cells. Then by testing the sample point from each region we can systematically 
identify where the formula is true.

At first glance it seems that the theory of ECs is not applicable to � as neither f1 = 0 nor f2 = 0
is logically implied by �. However, while there is no explicit EC we can observe that f1 f2 = 0 is 
an implicit constraint of �. Using Qepcad with this declared (an implementation of McCallum, 1999) 
gives a CAD with 249 cells. Later, in Section 3.3 we demonstrate how a TTICAD with 105 cells can be 
produced.

We also consider the related problem of identifying where

� := ( f1 = 0 ∧ g1 < 0) ∨ ( f2 > 0 ∧ g2 < 0) (3)

is true. As above, we could use a sign-invariant CAD with 317 cells, but this time there is no implicit 
EC. In Section 3.3 we produce a TTICAD with 183 cells.

1.4. Contributions and plan of the paper

We review the projection operators of McCallum (1998, 1999) in Section 2. The former produces 
sign-invariant CADs1 and the latter CADs truth-invariant for a formula with an EC. The review is nec-
essary since we use some of this theory to verify our new algorithm. It also allows us to compare our 

1 Actually order-invariant CADs (see Definition 3).



R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 5
Fig. 1. The polynomials from the worked examples of Section 1.3. The solid curves are f1 and g1 while the dashed curves are 
f2 and g2.

new contribution to these existing approaches. For this purpose we provide new complexity analyses 
of these existing theories in Section 2.3.

Sections 3 and 4 present our new TTICAD projection operator and verified algorithm. They follow 
Sections 2 and 3 of our ISSAC 2013 paper (Bradford et al., 2013a), but instead of requiring all QFFs to 
have an EC the theory here is applicable to all QFFs (producing savings so long as one has an EC). The 
strengthening of the theory means that a TTICAD can now be produced for � in Section 1.3 as well 
as �. This extension is important since it means TTICAD theory now applied to cases where there 
can be no overall implicit EC for a parent formula. In these cases the existing theory of ECs is not 
applicable and so the comparative benefits offered by TTICAD are even higher.

In Section 5 we discuss how the theory of reduced projection operators also allows for improve-
ments in the lifting phase. This is true for the existing theory also but the discovery was only made 
during the development of TTICAD. In Section 6 we present a complexity analysis of our new contri-
butions from Sections 3–5, demonstrating their benefit over the existing theory from Section 2. We 
have implemented the new ideas in a Maple package, discussed in Section 7. In particular, Section 7.3
summarises (Bradford et al., 2013b) on the choices required when using TTICAD and heuristics to 
help. Experimental results for our implementation (extending those in our ISSAC 2013 paper) are 
given in Section 8, before we finish in Section 9 with conclusions and future work.

Data access statement: Data directly supporting this paper (code, Maple and Qepcad input) are
openly available from http :/ /dx .doi .org /10 .15125 /BATH-00076.

2. Existing CAD projection operators

2.1. Review: sign-invariant CAD

Throughout the paper we let cont, prim, disc, coeff and ldcf denote the content, primitive part, 
discriminant, coefficients and leading coefficient of polynomials respectively (in each case taken with 
respect to a given main variable). Similarly, we let res denote the resultant of a pair of polynomials. 
When applied to a set of polynomials we interpret these as producing sets of polynomials, so for 
example

res(A) = {
res( f i, f j) | f i ∈ A, f j ∈ A, f j �= f i

}
.

The first improvements to Collins original projection operator were given by McCallum (1988) and 
Hong (1990). They were both subsets of Collins operator, meaning fewer projection polynomials, fewer 
cells in the CADs produced and quicker computation time. McCallum’s is actually a strict subset of 
Hong’s, however, it cannot be guaranteed correct (incorrectness is detected in the lifting process) for 
a certain class of (statistically rare) input polynomials, where Hong’s can.

http://dx.doi.org/10.15125/BATH-00076


6 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
Additional improvements have been suggested by Brown (2001) and Lazard (1994). The former 
required changes to the lifting phase while the latter had a flawed proof of validity (with current 
unpublished work suggesting it can still be safely used in many cases). In this paper we will focus on 
McCallum’s operators, noting that the alternatives could likely be extended to TTICAD theories too if 
desired. McCallum’s theory is based around the following condition, which implies sign-invariance.

Definition 3. A CAD is order-invariant with respect to a set of polynomials if each polynomial has 
constant order of vanishing within each cell.

Recall that a set A ⊂ Z[x] is an irreducible basis if the elements of A are of positive degree in 
the main variable, irreducible and pairwise relatively prime. Let A be a set of polynomials and B an 
irreducible basis of the primitive part of A. Then

P (A) := cont(A) ∪ coeff(B) ∪ disc(B) ∪ res(B) (4)

defines the operator of McCallum (1988). We can assume some trivial simplifications such as the 
removal of constants and exclusion of entries identical to a previous one (up to constant multiple). 
The main theorem underlying the use of P follows.

Theorem 4. (See McCallum, 1998.) Let A be an irreducible basis in Z[x] and let S be a connected submanifold 
of Rn−1 . Suppose each element of P (A) is order-invariant in S.

Then each element of A either vanishes identically on S or is analytic delineable on S, (a slight variant on 
traditional delineability, see McCallum, 1998). Further, the sections of A not identically vanishing are pairwise 
disjoint, and each element of A not identically vanishing is order-invariant in such sections.

Theorem 4 means that we can use P in place of Collins’ projection operator to produce sign-
invariant CADs so long as none of the projection polynomials with main variable xk vanishes on a cell 
of the CAD of Rk−1; a condition that can be checked when lifting. Input with this property is known 
as well-oriented. Note that although McCallum’s operator produces order-invariant CADs, a stronger 
property than sign-invariance, it is actually more efficient that the pre-existing sign-invariant opera-
tors. We examine the complexity of CAD using this operator in Section 2.3.

2.2. Review: CAD invariant with respect to an equational constraint

The main result underlying CAD simplification in the presence of an EC follows.

Theorem 5. (See McCallum, 1999.) Let f (x), g(x) be integral polynomials with positive degree in xn, let 
r(x1, . . . , xn−1) be their resultant, and suppose r �= 0. Let S be a connected subset of Rn−1 such that f is 
delineable on S and r is order-invariant in S.

Then g is sign-invariant in every section of f over S.

Fig. 2 gives a graphical representation of the question answered by Theorem 5. Here we consider 
polynomials f (x, y, z) and g(x, y, z) of positive degree in z whose resultant r is non-zero, and a 
connected subset S ⊂ R

2 in which r is order-invariant. We further suppose that f is delineable on 
S (noting that Theorem 4 with n = 3 and A = { f } provides sufficient conditions for this). We ask 
whether g is sign-invariant in the sections of f over S . Theorem 5 answers this question affirmatively: 
the real variety of g either aligns with a given section of f exactly (as for the bottom section of f in 
Fig. 2), or has no intersection with such a section (as for the top). The situation at the middle section 
of f cannot happen.

Theorem 5 thus suggests a reduction of the projection operator P relative to an EC f = 0: take 
only P ( f ) together with the resultants of f with the non-ECs. Let A be a set of polynomials, E ⊂ A
contain only the polynomial defining the EC, F be a square free basis of A, and B be the subset of F
which is a square-free basis for E . The operator

P E(A) := cont(A) ∪ P (F ) ∪ {resxn ( f , g) | f ∈ F , g ∈ B \ F } (5)



R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 7
Fig. 2. Graphical representation of Theorem 5.

was presented by McCallum (1999) along with an algorithm to produce a CAD truth-invariant for the 
EC and sign-invariant for the other polynomials when the EC was satisfied. It worked by applying first 
P E (A) and then building an order-invariant CAD of Rn−1 using P . We call such CADs invariant with 
respect to an equational constraint. Note that as with McCallum (1999) the algorithm only works for 
input satisfying a well-orientedness condition. Full details of the verification are given by McCallum
(1999) and a complexity analysis is given in the next subsection.

2.3. New complexity analyses

We provide complexity analyses of the algorithms from McCallum (1998, 1999) for comparison 
with our new contributions later. An analysis for the latter has not been published before, while the 
analysis for the former differs substantially from the one in McCallum (1985): instead of focusing 
on computation time, we examine the number of cells in the CAD of Rn produced: the cell count. 
We compare the dominant terms in a cell count bound for each algorithm studied. This focus avoids 
calculations with less relevant parameters, identical for all the algorithms. We note that all CAD ex-
perimentation shows a strong correlation between the number of cells produced and the computation 
time.

Our key parameters are the number of variables n, the number of polynomials m and their maxi-
mum degree d (in any one variable). Note that these are all restricted to positive integer values. We 
make much use of the following concepts.

Definition 6. Consider a set of polynomials p j . The combined degree of the set is the maximum 
degree (taken with respect to each variable) of the product of all the polynomials in the set: 
maxi

(
degxi

(∏
j p j

))
.

So for example, the set {x2 + 1, x2 + y3} has combined degree 4 (since the product has degree 4
in x and degree 3 in y).

Definition 7. (See McCallum, 1985.) A set of polynomials has the (m,d)-property if it can be parti-
tioned into m sets, such that each set has maximum combined degree d.

So for example, the set of polynomials {xy3 − x, x4 − xy, x4 − y4 + 1} has combined degree 9 and 
thus the (1, 9)-property. However, by partitioning it into three sets of one polynomial each, it also has 
the (3, 4)-property. Partitioning into 2 sets will show it to have the (2, 5), (2, 7) and (2, 8)-properties 
also. The following result follows from the definitions.

Proposition 8. If A has the (m, d)-property then so does any squarefree basis of A.



8 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
This contrasts with the facts that taking a square-free basis may not reduce the combined degree, 
but may cause exponential blow-up in the number of polynomials.

Proposition 9. Suppose a set has the (m, d)-property. Then, by taking the union of groups of � sets from the 
partition, it also has the 

(⌈m
�

⌉
, �d

)
-property.

Note that in the case � = 2 we have 
⌈m

2

⌉=
⌊

m+1
2

⌋
.

Example 10. Let S = {x2 y4 − x3, x2 y4 + x3} be a set of polynomials. Then S has the (2, 4) and 
(1, 8)-properties. A squarefree basis of S is given by S ′ = {x2, y4 − x, y4 + x} which has the (3, 4)

and (1, 8)-properties.
Proposition 9 states that S ′ must also have the (2, 8)-property, which can be checked by partition-

ing S ′ so that x2 is in a set of its own. However, from Proposition 8 we also know that S ′ must have 
the (2, 4)-property, which is obtained from either of the other partitions into two sets.

S ′ demonstrates the strength of the (m, d)-property. The trivial partition into sets of one polyno-
mial is equivalent to the simple approach of just tracking the number of polynomials and maximum 
degree. In this example such an approach would lead us to 3 polynomials of degree 4, contributing a 
possible 12 real roots. However, by using more sophisticated partitions we replace this by 2 sets, for 
each of which the product of polynomial entries has degree 4, and so at most 8 real roots contributed.

Though not used in this paper, we note an advantage of the (m, d)-property over the (1, md)-prop-
erty is a better bound on root separation: any two roots require O (2d) subdivisions to isolate, rather 
than the O (md) implied by considering the product of all polynomials.

We also recall the following classic identities for polynomials f , g, h:

res( f g,h) = res( f ,h) res(g,h); (6)

disc( f g) = disc( f )disc(g) res( f , g)2; (7)

disc( f ) = (−1)
1
2 d(d−1) 1

ad
res( f , f ′) (8)

where d is the degree of f , f ′ its derivative and ad its leading coefficient (all taken with respect to 
the given main variable).

Lemma 11. Suppose A is a set of polynomials in n variables with the (m, d) property. Then P (A) has the 
(M, 2d2) property with

M =
⌊

(m + 1)2

2

⌋
. (9)

Proof. Partition A as S1 ∪ · · · ∪ Sm according to its (m, d)-property. Let B be a square-free basis for 
prim(A), T1 the set of elements of B which divide some element of S1, and Ti be those elements of 
B which divide some element of Si but which have not already occurred in some T j : j < i.

(1) We first claim that each set

cont(Si) ∪ ldcf(Ti) ∪ disc(Ti) ∪ res(Ti) (10)

for i = 1, . . . , m has the (1, 2d2) property. Let c be the product of the elements of cont(Si), Ti =
{F1, . . . , Ft} for some t and F := cF1, . . . Ft. Then F divides the product of the elements of Si

and so has degree at most d. Thus res(F , F ′) must have degree at most 2d2 because it is the 
determinant of a (2d − 1 × 2d − 1) matrix in which each element has degree at most d. Then 



R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 9
by (8) and repeated application of (6) and (7) we see res(F , F ′) is a (non-trivial) power of c
multiplied by∏t

j=1 ldcf(F j)
∏t

j=1 disc(F j)
∏t

j<k res(F j, Fk)
2.

Since this includes all the elements of (10) the claim is proved.
(2) We are still missing from P (A) the res( f , g) where f ∈ Ti, g ∈ T j and i �= j. For fixed i, j consider 

res
(∏

f ∈Ti
f ,
∏

g∈T j
g
)

, which by (6) is the product of the missing resultants. This is the resultant 

of two polynomials of degree at most d and hence will have degree at most 2d2. Thus for fixed 
i, j the set of missing resultants has the (1, 2d2)-property, and so the union of all such sets the (

1
2 m(m − 1),2d2

)
-property.

(3) We are now missing from P (A) only the non-leading coefficients of B . The polynomials in the 
set Ti have degree at most d when multiplied together, and so, separately or together, have at 
most d non-leading coefficients, each of which has degree at most d. Hence this set of non-leading
coefficients has the (1, d2) property. This is the case for i from 1 to m and thus together the 
non-leading coefficients of B have the (m, d2)-property. We can then pair up these sets to get a 
partition with the (�m/2�, 2d2)-property (Proposition 9).

Hence P (A) can be partitioned into

m + m(m − 1)

2
+
⌈m

2

⌉
= m(m + 1)

2
+
⌊

m + 1

2

⌋
=
⌊

(m + 1)2

2

⌋

sets (where the final equality follows from m(m + 1) always being even) each with combined de-
gree 2d2. �

This concerns a single projection, and we must apply it recursively to consider the full set of 
projection polynomials. Weakening the bound as in the following allows for a closed form solution.

Corollary 12. If A is a set of polynomials with the (m, d) property where m > 1, then P (A) has the 
(m2, 2d2)-property.

Remark 13.

(1) Note that if A has the (1, d)-property then P (A) has the (2, 2d2) property and hence the need for 
m > 1 to apply Corollary 12. As our paper continues we present new theory that applies to the 
first projection only. Hence for a fair and accurate complexity comparison we will use Lemma 11
for the first projection and then Corollary 12 for subsequent ones, (applicable since even if we 
start with m = 1 polynomial for the first projection, we can assume m ≥ 2 thereafter).

(2) The analysis so far resembles Section 6.1 of McCallum (1985). However, that thesis leads us to 
the (m2d, 2d2)-property in place of Corollary 12. The extra dependency on d was avoided by an 
improved analysis in the proof of Lemma 11 part (3).

We consider the growth in projection polynomials and their degree when using the operator P in 
Table 1. Here the column headings refer not to the number of polynomials and their degree, but to the 
number of sets and their combined degree when applying Definition 7. We start with m polynomials 
of degree d and after one projection have a set with the (M, 2d2) property, using M from Lemma 11. 
We then use Corollary 12 to model the growth in subsequent projections, and a simple induction to 
fill in the table.

The size of the CAD produced depends on the number of real roots of the projection polynomials. 
We can hence bound the number of real roots in a set of polynomials with the (m, d)-property with 
md (in practice many of them will be strictly complex). We can therefore bound the number of real 
roots of the univariate projection polynomials by the product of the two entries in the row of Table 1



10 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
Table 1
Expression growth for CAD projection where: after the first projection we have polynomials with the (M, 2d2)-property and 
thereafter we measure growth using Corollary 12. The value of M could be (9), (13), (18), (24) or (29) depending on which 
projection scheme we are analysing.

Variables Number Degree Product

n m d md
n − 1 M 2d2 2Md2

n − 2 M2 8d4 23 M2d4

n − 3 M4 128d8 27 M4d8

.

.

.

.

.

.

.

.

.

.

.

.

n − r M2r−1
22r −1d2r

22r −1d2r
M2r−1

.

.

.

.

.

.

.

.

.

.

.

.

1 M2n−2
22n−1−1d2n−1

22n−1−1d2n−1
M2n−2

Product M2n−1−1m 22n−1−nd2n−1 22n−n−1d2n−1 M2n−1−1m

for 1 variable. The number of cells in the CAD of R1 is bounded by twice this plus 1. Similarly, the 
total number of cells in the CAD of Rn is bounded by the product of 2K + 1 where K varies through 
the Product column of Table 1, i.e. by

(2Md + 1)

n−1∏
r=1

[
2
(

22r−1d2r
M2r−1

)
+ 1

]
.

Omitting the +1 will leave us with the dominant term of the bound, which can be calculated explic-
itly as

22n−1d2n−1M2n−1−1m (11)

≤ 22n−1d2n−1
(

1
2 (m + 1)2

)2n−1−1
m = 22n−1

d2n−1(m + 1)2n−2m, (12)

where the inequality was introduced by omitting the floor function in (9). This may be compared 
with the bound in Theorem 6.1.5 of McCallum (1985), with the main differences explained by Re-
mark 13(2).

We now turn our focus to CAD invariant with respect to an EC. Recall that we use operator P E (A)

for the first projection only and P (A) thereafter. Hence we use Corollary 12 for the bulk of the 
analysis, and the next lemma when considering the first projection.

Lemma 14. Suppose A is a set of m polynomials in n variables each with maximum degree d, and that E ⊆ A
contains a single polynomial. Then the reduced projection P E(A) has the (M, 2d2)-property with

M =
⌊

1
2 (3m + 1)

⌋
. (13)

Proof. Since E contains a single polynomial its squarefree basis F has the (1, d)-property.

(1) The contents, leading coefficients and discriminants from F form a set R1 with combined degree 
2d2 (see proof of Lemma 11 step 1) and the other coefficients a set R2 with combined degree d2

(see proof of Lemma 11 step 3).
(2) The set of remaining contents R3 = cont(A) \ cont(E) has the (m − 1, d)-property and thus 

trivially, the (m − 1, d2)-property. Then R2 ∪ R3 has the (m, d2)-property and thus also the (�m
2 �,2d2

)
-property (Proposition 9).

(3) It remains to consider the final set of resultants in (5). Following the approach from the proof of 
Lemma 11 step 2, we conclude that for each of m − 1 polynomials in A \ E there contributes a 
set with the (1, 2d2)-property. So together they form a set R4 with the (m − 1, 2d2)-property.



R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 11
Hence P E (A) is contained in R1 ∪ (R2 ∪ R3) ∪ R4 which may be partitioned into

1 + ⌈m
2

⌉+ (m − 1) =
⌊

1
2 (m + 1)

⌋
+ m =

⌊
1
2 (3m + 1)

⌋
sets of combined degree 2d2. �

We can use Table 1 to model the growth in projection polynomials for the algorithm in McCallum
(1999) as well, since the only difference will be the number of polynomials produced by the first 
projection, and thus the value of M . Hence the dominant term in the bound on the total number of 
cells is given again by (11), which in this case becomes (upon omitting the floor)

22n−1d2n−1( 1
2 (3m + 1))2n−1−1m = 22n−1

d2n−1(3m + 1)2n−1−1m. (14)

Since P E (A) is a subset of P (A) a CAD invariant with respect to an EC should certainly be simpler 
than a sign-invariant CAD for the polynomials involved. Indeed, comparing the different values of M
we see that

1
2 (m + 1)2 > 1

2 (3m + 1) (strictly so for m > 1).

Comparing the dominant terms in the cell count bounds, (14) and (12), we see the main effect is a 
decrease in one of the double exponents by 1.

3. A projection operator for TTICAD

3.1. New projection operator

In McCallum (1999) the central concept is the reduced projection of a set of polynomials A relative 
to a subset E (defining the EC). The full projection operator is applied to E and then supplemented 
by the resultants of polynomials in E with those in E \ A, since the latter group only effect the truth 
of the formula when they share a root with the former. We extend this idea to define a projection 
for a list of sets of polynomials (derived from a list of formulae), some of which may have subsets 
(derived from ECs).

For simplicity in McCallum (1999) the concept is first defined for the case when A is an irreducible 
basis. We emulate this approach, generalising for other cases by considering contents and irreducible 
factors of positive degree when verifying the algorithm in Section 4. So let A = {Ai}t

i=1 be a list of 
irreducible bases Ai and let E = {Ei}t

i=1 be a list of subsets Ei ⊆ Ai . Put A =⋃t
i=1 Ai and E =⋃t

i=1 Ei . 
Note that we use the convention of uppercase Roman letters for sets of polynomials and calligraphic 
letters for lists of these.

Definition 15. With the notation above the reduced projection of A with respect to E is

PE (A) :=⋃t
i=1 P Ei (Ai) ∪ RES×(E) (15)

where RES×(E) is the cross resultant set

RES×(E) = {resxn( f , f̂ ) | ∃ i, j such that f ∈ Ei, f̂ ∈ E j, i < j, f �= f̂ } (16)

and

P E(A) = P (E) ∪ {resxn ( f , g) | f ∈ E, g ∈ A, g /∈ E
}
,

P (A) = {coeffs( f ),disc( f ), resxn ( f , g) | f , g ∈ A, f �= g}.

Theorem 16. Let S be a connected submanifold of Rn−1 . Suppose each element of PE (A) is order invariant 
in S. Then each f ∈ E either vanishes identically on S or is analytically delineable on S; the sections over S of 
the f ∈ E which do not vanish identically are pairwise disjoint; and each element f ∈ E which does not vanish 
identically is order-invariant in such sections.

Moreover, for each i, in 1 ≤ i ≤ t every g ∈ Ai \ Ei is sign-invariant in each section over S of every f ∈ Ei
which does not vanish identically.



12 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
Proof. The crucial observation for the first part is that P (E) ⊆ PE (A). To see this, recall equation (15)
and note that we can write

P (E) =⋃
i P (Ei) ∪ RES×(E).

We can therefore apply Theorem 4 to the set E and obtain the first three conclusions immediately, 
leaving only the final conclusion to prove.

Let i be in the range 1 ≤ i ≤ t , let g ∈ Ai \ Ei and let f ∈ Ei . Suppose that f does not vanish 
identically on S . Now resxn ( f , g) ∈ PE (A), and so is order-invariant in S by hypothesis. Further, we 
already concluded that f is delineable. Therefore by Theorem 5, g is sign-invariant in each section of 
f over S . �

Theorem 16 is the key tool for the verification of our TTICAD algorithm in Section 4. It allows us 
to conclude the output is correct so long as no f ∈ E vanishes identically on the lower dimensional 
manifold, S . A polynomial f in r variables that vanishes identically at a point α ∈ R

r−1 is said to be 
nullified at α.

The theory of this subsection appears identical to the work in Bradford et al. (2013a). The dif-
ference is in the application of the theory in Section 4. We suppose that the input is a list of QFFs, 
{φi}, with each Ai defined from the polynomials in each φi . In Bradford et al. (2013a) there was an 
assumption (no longer made) that each of these formulae had a designated EC f i = 0 from which the 
subsets Ei are defined. Instead, we define Ei to be a basis for { f i} if there is such a designated EC 
and define Ei = Ai otherwise. That is, we need to treat all the polynomials in QFFs with no EC with 
the importance usually reserved for ECs.

3.2. Comparison with using a single implicit equational constraint

It is clear that in general the reduced projection PE (A) will lead to fewer projection polynomi-
als than using the full projection P . However, a comparison with the existing theory of equational 
constraints requires a little more care.

First, we note that the TTICAD theory is applicable to a sequence of formulae while the theory of 
McCallum (1999) is applicable only to a single formula. Hence if the truth value of each QFF is needed 
then TTICAD is the only option; a truth-invariant CAD for a parent formula will not necessarily suffice. 
Second we note that even if the sequence do form a parent formula then this must have an overall 
EC to use McCallum (1999) while the TTICAD theory is applicable even if this is not the case.

Let us consider the situation where both theories are applicable, i.e. we have a sequence of for-
mulae (forming a parent formula) for which each has an EC and thus the parent formula an implicit 
EC (their product). In the context of Section 1.2 this corresponds to using 

∏
i f i as the EC. The im-

plicit EC approach would correspond to using the reduced projection P E(A) of McCallum (1999), with 
E = ∪i Ei and A = ∪i Ai . We make the simplifying assumption that A is an irreducible basis. In general 
PE (A) will still contain fewer polynomials than P E (A) since P E (A) contains all resultants res( f , g)

where f ∈ Ei, g ∈ A j (and g /∈ E), while PE (A) contains only those with i = j (and g /∈ Ei ). Thus even 
in situations where the previous theory applies there is an advantage in using the new TTICAD the-
ory. These savings are highlighted by the worked examples in the next subsection and the complexity 
analysis later.

3.3. Worked examples

In Section 4 we define an algorithm for producing TTICADs. First we illustrate the savings with our 
worked examples from Section 1.3, which satisfy the simplifying assumptions from Section 3.1.

We start by considering � from equation (2). In the notation above we have:

A1 := { f1, g1}, E1 := { f1};
A2 := { f2, g2}, E2 := { f2}.

We construct the reduced projection sets for each φi ,



R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 13
Fig. 3. The polynomials from � in equation (2) along with the roots of PE (A) (solid lines), P E (A) (dashed lines) and P (A)

(dotted lines).

Fig. 4. Magnified region of Fig. 3.

P E1(A1) =
{

x2 − 1, x4 − x2 + 1
16

}
,

P E2(A2) =
{

x2 − 8x + 15, x4 − 16x3 + 95x2 − 248x + 3841
16

}
,

and the cross-resultant set

Res×(E) = {resy( f1, f2)} = {68x2 − 272x + 285}.
PE (A) is then the union of these three sets. In Fig. 3 we plot the polynomials (solid curves) and 
identify the 12 real solutions of PE (A) (solid vertical lines). We can see the solutions align with the 
asymptotes of the f i ’s and the important intersections (those of f1 with g1 and f2 with g2).

If we were to instead use a projection operator based on an implicit EC f1 f2 = 0 then in the 
notation above we would construct P E (A) from A = { f1, f2, g1, g2} and E = { f1, f2}. This set provides 
an extra 4 solutions (the dashed vertical lines) which align with the intersections of f1 with g2 and 
f2 with g1. Finally, if we were to consider P (A) then we gain a further 4 solutions (the dotted vertical 
lines) which align with the intersections of g1 and g2 and the asymptotes of the gi ’s. In Fig. 4 we 
magnify a region to show explicitly that the point of intersection between f1 and g1 is identified by 
PE (A), while the intersections of g2 with both f1 and g1 are ignored.

The 1-dimensional CAD produced using PE (A) has 25 cells compared to 33 when using P E (A)

and 41 when using P (A). However, it is important to note that this reduction is amplified after lifting 
(using Theorem 16 and Algorithm 1). The 2-dimensional TTICAD has 105 cells and the sign-invariant 
CAD has 317. Using Qepcad to build a CAD invariant with respect to the implicit EC gives us 249 cells.



14 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
Fig. 5. The polynomials from � in equation (3) along with the roots of PE (A).

Fig. 6. Magnified region of Fig. 5.

Next we consider determining the truth of � from equation (3). This time

A1 := { f1, g1}, E1 := { f1},
A2 := { f2, g2}, E2 := { f2, g2},

and so P E1 (A1) is as above but P E2 (A2) contains an extra polynomial x −4 (the coefficient of y in g2). 
The cross-resultant set RES×(E) also contains an extra polynomial,

resy( f1, g2) = x4 − 8x3 + 16x2 + 1
2 x − 31

16 .

These two extra polynomials provide three extra real roots and hence the 1-dimensional CAD pro-
duced using PE (A) this time has 31 cells.

In Fig. 5 we again graph the four curves this time with solid vertical lines highlighting the real 
solutions of PE (A). By comparing with Fig. 3 we see that more points in the CAD of R1 have been 
identified for the TTICAD of � than the TTICAD of � (15 instead of 12) but that there is still a saving 
over the sign-invariant CAD (which had 20, the five extra solutions indicated by dotted lines). The 
lack of an EC in the second clause has meant that the asymptote of g2 and its intersections with f1
have been identified. However, note that the intersections of g1 with f2 and g2 and have not been. 
Fig. 6 magnifies a region of Fig. 5. Compare with Fig. 4 to see the dashed line has become solid, while 
the dotted line remains unidentified by the TTICAD.

Note that we are unable to use McCallum (1999) to study � as there is no polynomial equation 
logically implied (either explicitly or implicitly) by this formula. Hence there are no dashed lines and 
the choice is between the sign-invariant CAD with 317 cells or the TTICAD, which for this example 
has 183 cells.



R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 15
Algorithm 1: TTICAD algorithm.

Input : A list of quantifier-free formulae {φi}t
i=1 in variables x1, . . . , xn . Each φi has at most one designated EC f i = 0.

Output: Either • D: A CAD of Rn (described by lists I and S of cell indices and sample points) which is truth table
invariant for the list of input formulae; or • FAIL: If A is not well-oriented with respect to E (Definition 18).

1 for i = 1 . . . t do
2 If there is no designated EC then set Ei := Ai and otherwise set Ei := { f i};
3 Compute the finest squarefree basis Fi for prim(Ei);

4 Set F ← ∪t
i=1 Fi ;

5 if n = 1 then
6 Isolate the real roots of the polynomials in F and thus form cell indices and sample points for a CAD of R ;
7 return I and S for D ;
8 else
9 for i = 1 . . . t do

10 Extract the set Ai of polynomials in φi ;
11 Compute the set Ci of contents of the elements of Ai ;
12 Compute the set Bi , the finest squarefree basis for prim(Ai);

13 Set C := ∪t
i=1Ci , B := (Bi)

t
i=1 and F := (Fi)

t
i=1;

14 Construct the projection set P := C ∪ PF (B) ;
15 Attempt to construct a lower-dimensional CAD: w ′, I ′, S ′ := CADW(n − 1, P) ;
16 if w ′ = false then
17 return FAIL (since P is not well oriented) ;
18 I ← ∅; S ← ∅ ;
19 for each cell c ∈ D′ do
20 Lc ← {};
21 for i = 1, . . . t do
22 if any f ∈ Ei is nullified on c then
23 if dim(c) > 0 then
24 return FAIL (since {φi}t

i=1 is not well oriented) ;
25 else
26 Lc ← Lc ∪ Bi ;

27 else
28 Lc ← Lc ∪ Fi ;

29 Generate a stack over c using Lc : construct cell indices and sample points for the stack over c of the 
polynomials in Lc , adding them to I and S ;

30 return I and S for D;

4. Algorithm

4.1. Description and proof

We describe carefully Algorithm 1. This will create a TTICAD of Rn for a list of QFFs {φi}t
i=1 in 

variables x = x1 ≺ x2 ≺ · · · ≺ xn , where each φi has at most one designated EC f i = 0 of positive 
degree (there may be other non-designated ECs).

It uses a subalgorithm CADW, which was validated by McCallum (1998). The input of CADW is: r, 
a positive integer and A, a set of r-variate integral polynomials. The output is a boolean w which if 
true is accompanied by an order-invariant CAD for A (represented as a list of indices I and sample 
points S).

Let Ai be the set of all polynomials occurring in φi . If φi has a designated EC then put Ei = { f i}
and if not put Ei = Ai . Let A and E be the lists of the Ai and Ei respectively. Our algorithm effectively 
defines the reduced projection of A with respect to E in terms of the special case of this definition 
from the previous section. The definition amounts to

PE (A) := C ∪ PF (B). (17)



16 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
Here C is the set of contents of all the elements of all Ai ; B the list {Bi}t
i=1 such that Bi is the finest2

squarefree basis for the set prim(Ai) of primitive parts of elements of Ai which have positive degree; 
and F is the list {Fi}t

i=1, such that Fi is the finest squarefree basis for prim(Ei). (The reader may 
notice that this notation and the definition of PE (A) here is analogous to the work in Section 5 of 
McCallum, 1999.)

We shall prove that, provided the input satisfies the condition of well-orientedness given in Def-
inition 18, the output of Algorithm 1 is indeed a TTICAD for {φi}. We first recall the more general 
notion of well-orientedness from McCallum (1998). The boolean output of CADW is false if the input 
set was not well-oriented in this sense.

Definition 17. A set A of n-variate polynomials is said to be well oriented if whenever n > 1, every 
f ∈ prim(A) is nullified by at most a finite number of points in Rn−1, and (recursively) P (A) is 
well-oriented.

This condition is required for CADW since the validity of this algorithm relies on Theorem 4 which 
holds only when polynomials do not vanish identically. The conditions allows for a finite number of 
these nullifications since this indicates a problem on a zero cell, that is a single point. In such cases 
it is possible to replace the nullified polynomial by a so called delineating polynomial which is not 
nullified and can be used in place to ensure the delineability of the other. The use of these is part of 
the verified algorithm CADW (McCallum, 1998) and they are studied in detail by Brown (2005).

We now define our new notion of well-orientedness for the lists of sets A and E .

Definition 18. We say that A is well oriented with respect to E if, whenever n > 1, every polynomial 
f ∈ E is nullified by at most a finite number of points in Rn−1, and PF (B) is well-oriented in the 
sense of Definition 17.

It is clear than Algorithm 1 terminates. We now prove that it is correct using the theory developed 
in Section 3.

Theorem 19. The output of Algorithm 1 is as specified.

Proof. We must show that when the input is well-oriented the output is a TTICAD, (each φi has 
constant truth value in each cell of D), and FAIL otherwise.

If the input was univariate then it is trivially well-oriented. The algorithm will construct a CAD D
of R1 using the roots of the irreducible factors of the polynomials in E (steps 6 to 7). At each 0-cell 
all the polynomials in each φi trivially have constant signs, and hence every φi has constant truth 
value. In each 1-cell no EC can change sign and so every φi has constant truth value false, unless 
there are no ECs in any clause. In this case the algorithm would have constructed a CAD using all the 
polynomials and hence on each 1-cell no polynomial changes sign and so each clause has constant 
truth value.

From now on suppose n > 1. If P = C ∪ PF (B) is not well-oriented in the sense of Definition 17
then CADW returns w ′ as false. In this case the input is not well oriented in the sense of Definition 18
and Algorithm 1 correctly returns FAIL in step 17. Otherwise, we have w ′ = true with I ′ and S ′
specifying a CAD, D′ , which is order-invariant with respect to P (by the correctness of CADW, as 
proved in McCallum, 1998). Let c, a submanifold of Rn−1, be a cell of D′ and let α be its sample 
point.

We suppose first that the dimension of c is positive. If any polynomial f ∈ E vanishes identically 
on c then the input is not well oriented in the sense of Definition 18 and the algorithm correctly 
returns FAIL at step 24. Otherwise, we know that the input list was certainly well-oriented. Since no 
polynomial f ∈ E vanishes then no element of the basis F vanishes identically on c either. Hence, by 

2 A decomposition into irreducibles. This avoids various technical problems.



R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 17
Theorem 16, applied with A = B and E = F , each element of F is delineable on c, and the sections 
over c of the elements of F are pairwise disjoint. Thus the sections and sectors over c of the elements 
of F comprise a stack � over c. Furthermore, the last conclusion of Theorem 16 assures us that, for 
each i, every element of Bi \ Fi is sign-invariant in each section over c of every element of Fi . Let 
1 ≤ i ≤ t . We shall show that each φi has constant truth value in both the sections and sectors of �.

If φi has a designated EC then let f i denote the constraint polynomial; otherwise let f i denote an 
arbitrary element of Ai .

Consider first a section σ of �. Now f i is a product of its content cont( f i) and some elements 
of the basis Fi . But cont( f i), an element of P, is sign-invariant (indeed order-invariant) in the whole 
cylinder c × R and hence, in particular, in σ . Moreover all of the elements of Fi are sign-invariant 
in σ , as was noted previously. Therefore f i is sign-invariant in σ . If φi has no constraint (and so 
f i denotes an arbitrary element of Ai ) then this implies that φi has constant truth value in σ . So 
consider from now on the case in which f i = 0 is the designated constraint polynomial of φi .

If f i is positive or negative in σ then φi has constant truth value false in σ . So suppose that f i = 0
throughout σ . It follows that σ must be a section of some element of the basis Fi . Let g ∈ Ai \ Ei be 
a non-constraint polynomial in Ai . Now, by the definition of Bi , we see g can be written as

g = cont(g)hp1
1 · · ·hpk

k

where h j ∈ Bi, p j ∈N. But cont(g), in P, is sign-invariant (indeed order-invariant) in the whole cylin-
der c × R, and hence in particular in σ . Moreover each h j is sign-invariant in σ , as was noted 
previously. Hence g is sign-invariant in σ . (Note that in the case where g does not have main vari-
able xn then g = cont(g) and the conclusion still holds.) Since g was an arbitrary element of Ai \ Ei , 
it follows that all polynomials in Ai are sign-invariant in σ , hence that φi has constant truth value 
in σ .

Next consider a sector σ of the stack �, and notice that at least one such sector exists. As ob-
served above, cont( f i) is sign-invariant in c, and f i does not vanish identically on c. Hence cont( f i) is 
non-zero throughout c. Moreover each element of the basis Fi is delineable on c. Hence f i is nullified 
by no point of c. It follows from this that the algorithm does not return FAIL during the lifting phase. 
It follows also that f i �= 0 throughout σ . Hence φi has constant truth value false in σ .

It remains to consider the case in which the dimension of c is 0. In this case the roots of the 
polynomials in the lifting set Lc constructed by the algorithm determine a stack � over c. Each φi
trivially has constant truth value in each section (0-cell) of this stack, and the same can routinely be 
shown for each sector (1-cell) of this stack. �
4.2. TTICAD via the ResCAD set

When no f ∈ E is nullified there is an alternative implementation of TTICAD which would be 
simple to introduce into existing CAD implementations. Define

R({φi}) = E ∪⋃t
i=1

{
resxn ( f , g) | f ∈ Ei, g ∈ Ai, g /∈ Ei

}
to be the ResCAD set of {φi}.

Theorem 20. Let A = (Ai)
t
i=1 be a list of irreducible bases Ai and let E = (Ei)

t
i=1 be a list of non-empty 

subsets Ei ⊆ Ai . Then we have

P (R({φi})) = PE (A).

The proof is straightforward and so omitted here.

Corollary 21. If no f ∈ E is nullified by a point in Rn−1 then inputting R({φi}) into any algorithm which pro-
duces a sign-invariant CAD using McCallum’s projection operator P will result in the TTICAD for {φi} produced 
by Algorithm 1.

Corollary 21 gives a simple way to compute TTICADs using existing CAD implementations based 
on McCallum’s approach, such as Qepcad.



18 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
5. Utilising projection theory for improvements to lifting

Consider the case when the input to Algorithm 1 is a single QFF {φ} with a declared EC. In this case 
the reduced projection operator PE (A) produces the same polynomials as the operator P E (A) and so 
one may expect the TTICAD produced to be the same as the CAD produced by an implementation of 
McCallum (1999) such as Qepcad. In practice this is not the case because Algorithm 1 makes use of 
the reduced projection theory in the lifting phase as well as the projection phase.

McCallum (1999) discussed how the theory of a reduced projection operator would improve the 
projection phase of CAD, by creating fewer projection polynomials. The only modification to the lifting 
phase of Collins’ CAD algorithm described was the need to check the well-orientedness condition of 
Definition 17.

In this section we note two subtleties in the lifting phase of Algorithm 1 which result in efficien-
cies that could be replicated for use with the original theory. In fact, the ProjectionCAD package 
(England et al., 2014d) discussed in Section 7.1 has commands for building CADs invariant with re-
spect to a single EC which does this.

5.1. A finer check for well-orientedness

Theorem 2.3 of McCallum (1999) verified the use of P E (A). The proof uses Theorem 4 to conclude 
sign-invariance for the polynomial defining the EC, and Theorem 5 to conclude sign-invariance for the 
other polynomials only when the EC was satisfied.

To apply Theorem 4 here we need the EC polynomial and the projection polynomials obtained by 
repeatedly applying P to have a finite number of nullification points. Meanwhile, the application of 
Theorem 5 requires that the resultants of the EC polynomial with the others polynomials have no 
nullification points. Both these requirements are guaranteed by the input satisfying Definition 17, the 
condition used in McCallum (1999). However, this also requires that other projection polynomials, 
including the non-ECs in the input, to have no nullification points.

In Algorithm 1, step 22 only checks for nullification of the polynomials in Ei (in this context 
meaning only the EC). Hence this algorithm is checking the necessary conditions but not whether the 
non-ECs (in the main variable) are nullified.

Example 22. Assume the variable ordering x ≺ y ≺ z ≺ w and consider the polynomials

f = x + y + z + w, g = zy − x2 w

forming the formula f = 0 ∧ g < 0. We could analyse this using a sign-invariant CAD with 557 cells 
but it is more efficient to make use of the EC. Our implementation of Algorithm 1 produces a CAD 
with 165 cells, while declaring the EC in QEPCAD results in 221 cells (the higher number is explained 
in subsection 5.2). Qepcad also prints:

Error! Delineating polynomial should be added over cell(2,2)!

indicating the output may not be valid. The error message was triggered by the nullification of g
when x = y = 0 which does not actually invalidate the theory. Qepcad is checking for nullification of 
all projection polynomials leading to unnecessary errors.

In fact, we can take this idea further in the case where Ei = Ai for some i: in such a case we 
do not need to check any elements of (that particular) Ei for nullification (since we are using the 
theory of McCallum, 1998) and it is the final lift meaning only sign- (rather than order-) invariance is 
required.

5.2. Smaller lifting sets

Traditionally in CAD algorithms the projection phase identifies a set of projection polynomials, 
which are then used in the lifting phase to create the stacks. However when making use of ECs we 



R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 19
can actually be more efficient by discarding some of the projection polynomials before lifting. The 
non-ECs (in the main variable) are part of the set of projection polynomials, required in order to 
produce subsequent projection polynomials (when we take their resultant with the EC). However, 
these polynomials are not (usually) required for the lifting since Theorem 5 can (usually) be used to 
conclude them sign-invariant in those sections produced when lifting with the EC.

Note that in Algorithm 1 the projection polynomials are formed from the input polynomials (in 
the main variable) and the set of polynomials P constructed in step 14 which are not in the main 
variable. The lower dimensional CAD D constructed in step 15 is guaranteed to be sign-invariant 
for P. In particular, P contains the resultants of the EC with the other constraints and thus D is 
already decomposing the domain into cells such that the presence of an intersection of f and g is 
invariant in each cell. Hence for the final lift we need to build stacks with respect to f .

The following examples demonstrate these efficiencies.

Example 23. Consider from Section 1.3 the circle f1, hyperbola g1 and sub-formula φ1 := f1 =
0 ∧ g1 < 0. Building a sign-invariant CAD for these polynomials uses 83 cells with the induced CAD 
of R identifying 7 points. Declaring the EC in QEPCAD results in a CAD with 69 cells while using our 
implementation of Algorithm 1 produces a CAD with 53 cells. Both implementations give the same 
induced CAD of R identifying 6 points but Qepcad uses more cells for the CAD of R2.

In particular, ProjectionCAD has a cell where x < −2 and y is free while Qepcad uses three 
cells, splitting where g1 changes sign. The splitting is not necessary for a CAD invariant with respect 
to the EC since f1 is non-zero (and φ1 hence false) for all x < −2.

Example 24. Now consider all four polynomials from Section 1.3 and the formula � from equation (2). 
In Section 3.3 we reported that a TTICAD could be built with 105 cells compared to a CAD with 249 
cells built invariant with respect to the implicit EC f1 f2 = 0 using Qepcad. The improved projection 
resulted in the induced CAD of R identifying 12 points rather than 16.

We now observe that some of the cell savings was actually down to using smaller sets of lifting 
polynomials. We may simulate the projection with respect to the implicit EC via Algorithm 1 by 
inputting a set consisting of the single formula

�′ = f1 f2 = 0 ∧ �

(note that logically � = �′). The implementation in ProjectionCAD would then produce a CAD 
with 145 cells. So we may conclude that improved lifting allowed for a saving of 104 cells and im-
proved projection a further saving of 40 cells.

In this example 72% of the cell saving came from improved lifting and 28% from improved pro-
jection, but we should not conclude that the former is more important. The improvement is to the 
final lift (from a CAD of Rn−1 to one of Rn) and the first projection (from polynomials in n variables 
to those with n − 1). Hence the savings from improved projection get magnified throughout the rest 
of the algorithm, and so as the number of variables in a problem increases so will the importance of 
this.

Example 25. We consider a simple 3d generalisation of the previous example. Let

�3d = (
x2 + y2 + z2 − 1 = 0 ∧ xyz − 1

4 < 0
)

∨ ((x − 4)2 + (y − 1)2 + (z − 2)2 − 1 = 0 ∧ (x − 4)(y − 1)(z − 2) − 1
4 < 0

)
and assume variable ordering x ≺ y ≺ z. Using Algorithm 1 on the two QFFs joined by disjunction 
gives a CAD with 109 cells while declaring the implicit EC in Qepcad gives 739 cells. Using Algo-
rithm 1 on the single formula conjuncted with the implicit EC gave a CAD with 353 cells. So in this 
case the improved lifting saves 386 cells and the improved projection a further 244 cells.

Moving from 2 to 3 variables has increased the proportion of the saving from improved projection 
from 28% to 39%. The complexity analysis in the next section will further demonstrate the importance 



20 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
of improved projection, especially for the problem classes where no implicit EC exists (see also the 
experiments in Section 8.3).

6. Complexity analyses of new contributions

In this section we closely follow the approach of our new analysis for the existing theory given in 
Section 2.3. We will first study the special case of TTICAD when every QFF has an EC, before moving 
to the general case. This is because such formulae may be studied using McCallum (1999) and so our 
comparison must be with this as well as McCallum (1998) in order to fully clarify the advantages of 
our new projection operator.

6.1. When every QFF has an equational constraint

We consider a sequence of t QFFs which together contain m constraints and are thus defined by at 
most m polynomials. We suppose further that each QFF has at least one EC, and that the maximum 
degree of any polynomial in any variable is d. Let A be the sequence of sets of polynomials Ai
defining each formula, E the sequence of subsets Ei ⊂ Ai defining the ECs, and denote the irreducible 
bases of these by Bi and Fi .

Lemma 26. Under the assumptions above, PE (A) has the (M, 2d2)-property with

M =
⌊

1
2 (3m + 1)

⌋
+ 1

2 (t − 1)t. (18)

Proof. From equations (17) and (15) we have

PE (A) = cont(A) ∪⋃t
i=1 P Fi (Bi) ∪ Res×(F). (19)

(1) Consider first the cross resultant set. Let T1 be the set of elements of Bi which divide some 
element of F1, and Ti, i = 2, . . . , t be those elements of Bi which divide some element of Fi
and do not already occur in some T j : j < i. Then using the same argument as in the proof of 
Lemma 11 step 2 we see that the cross-resultant set can be partitioned into 1

2 (t − 1)t sets of 
combined degrees at most 2d2.

(2) We now consider the P Ei (Ai) since

cont(A) ∪⋃t
i=1 P Fi (Bi) =⋃t

i=1 P Ei (Ai). (20)

(a) Let mi be the polynomials defining Ai . We follow Lemma 14 to say that for each i: the 
contents, leading coefficients and discriminants for Ei form a set Ri,1 with combined degree 
2d2; the other coefficients for Ei form a set Ri,2 with combined degree d2; the remaining 
contents of each Ai form a set Ri,3 = cont(Ai) \ cont(Ri,1) with the (mi − 1, d2)-property; the 
final set of resultants in (5) for each i form a set Ri,4 with the (mi − 1, 2d2)-property.

(b) R1 = ⋃t
i=1 Ri,1 has the (t, 2d2)-property while R4 = ⋃t

i=1 Ri,4 may be partitioned into ∑t
i=1mi − 1 = m − t sets of combined degree 2d2.

(c) The union R23 =⋃t
i=1 Ri,2 ∪ Ri,3 may be partitioned into∑t

i=1mi − 1 + 1 = m

sets of combined degree d2, and so has the 
(� 1

2 (m + 1)�, 2d2
)
-property.

Hence (20), which equals R1 ∪ R23 ∪ R4, has the 
(� 1

2 (3m + 1)�, 2d2
)

property.

So together we see that (19) has the (M, 2d2)-property with M as given in (18). �
To analyse Algorithm 1 we will apply Lemma 26 once and then Corollary 12 repeatedly. The growth 

in factors is given by Table 1, with M this time representing (18). Thus the dominant term in the 
bound is calculated from (11) (omitting the floor in M) as



R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 21
22n−1d2n−1( 1
2 (3m + 1) + 1

2 (t − 1)t)2n−1−1m

= 22n−1
d2n−1(3m + t2 − t + 1)2n−1−1m. (21)

Actually, this bound can be lowered by noting that for the final lift we use only the t ECs rather than 
all m of the input polynomials, reducing the bound to

22n−1
d2n−1(3m + t2 − t + 1)2n−1−1t. (22)

Remark 27. Observe that if t = 1 then the value of M for TTICAD in (18) becomes (13), the value 
for a CAD invariant with respect to an EC. Similarly, if t = m then (18) becomes (9), the value for 
sign-invariant CAD. Actually, in these two situations the TTICAD projection operator reverts to the 
previous ones. These are the extremal values of t and provide the best and worse cases respectively.

We can conclude from the remark that TTICAD is superior to sign-invariant CAD (strictly so unless 
t = m). Comparing the bounds (22) and (12) we see the effect is a reduction in the double exponent 
of the factor dependent on m for t � m, which gradually reduces as t gets closer to m.

It would be incorrect to conclude from the remark that the theory of McCallum (1999) is superior 
to TTICAD. In the case t = 1 the algorithms and their analysis are equal up to the final lifting stage. 
As discussed in Section 5 this can be applied to the case t = 1 also, with the effect of reducing the 
bound (14) by a factor of m to

22n−1
d2n−1(3m + 1)2n−1−1. (23)

If t > 1 then McCallum (1999) cannot be applied directly since it requires a single formula with an 
EC. However, it can be applied indirectly by considering the parent formula formed by the disjunction 
of the individual QFFs which has the product of the individual ECs as an implicit EC. A CAD for this 
parent formula produced using McCallum (1999) would also be a TTICAD for the sequence of QFFs. 
Thus we provide a complexity analysis for this case.

6.1.1. With a parent formula and implicit EC-CAD
By working with the extra implicit EC we are starting with one extra polynomial, whose degree 

is td. However, we know the factorisation into t polynomials so suppose we start from here (indeed, 
this is what our implementation does).

Lemma 28. Consider a set A of m polynomials in n variables with maximum degree d, and a subset E =
{ f1, . . . , ft} ⊆ A. Then P E(A), has the (M, 2d2)-property with

M = 1
2 (2m − t + 1)t +

⌊
1
2 (m + 1)

⌋
(24)

Proof. Partition E into subsets Si = { f i} for i = 1, . . . , t . Then P E(A) from (5) is

cont(A \ E) +⋃t
i=1 P (Si) + {resxn ( f , g) | f ∈ F , g ∈ F , g �= f }

+ {resxn ( f , g) | f ∈ F , g ∈ B \ F }. (25)

(1) We start by considering the first two terms in (25).
(a) For each P (Si): the contents, leading coefficients and discriminants form a set Ri,1 with 

combined degree 2d2, and the other coefficients a set Ri,2 with combined degree d2.
(b) The remaining contents R3 = cont(A) \ cont(E) has the (m − t, d2)-property.
(c) Together, the set R1 =⋃t

i=1 R1,i has the (t, 2d2)-property.
(d) Together, R23 = R3 ∪ ⋃t

i=1 R2,i has the (m, d2)-property. It can be further partitioned into 
� 1

2 (m + 1)� sets of combined degree 2d2.
The first two terms of (25) may be partitioned into R1 ∪ R23 and thus further into t +� 1

2 (m + 1)�
sets of combined degree 2d2.



22 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
(2) The first set of resultants in (25) has size 1
2 (t − 1)t and maximum degree 2d2.

(3) The second set of resultants in (25) may be decomposed as⋃t
i=1{resxn ( f , g) | f ∈ Si, g ∈ B \ F }.

Since |Si | = 1 and |B \ F | has the (m − t, d)-property, each of these subsets has (m − t,
2d2)-property (following Lemma 11 step 2). Thus together the set of them has the (t(m − t),
2d2)-property.

Hence P E (A) as given in (25) may be partitioned into

t + � 1
2 (m + 1)� + 1

2 (t − 1)t + t(m − t) = 1
2 (2m − t + 1)t +

⌊
1
2 (m + 1)

⌋
sets of combined degree 2d2. �

Thus the growth of projection polynomials in this case is given by Table 1 with M from (24). The 
dominant term in the cell count bound is calculated from (11) as

22n−1d2n−1( 1
2 (t(2m − t + 1) + m + 1))2n−1−1m

= 22n−1
d2n−1(t(2m − t + 1) + m + 1)2n−1−1m.

If we follow Section 5 to simplify the final lift this reduces to

22n−1
d2n−1(t(2m − t + 1) + m + 1)2n−1−1t. (26)

6.1.2. Comparison
Observe that if t = 1 then the value of M in (24) becomes (13), while if t = m it becomes (9), just 

like TTICAD. However, since the difference between (24) and (18) is

mt − t2 − m + t = (t − 1)(m − t),

we see that for all other possible values of t the TTICAD projection operator has a superior 
(m, d)-property. This means fewer polynomials and a lower cell count, as noted earlier in Section 3.2. 
Comparing the bounds (22) and (26) we see the effect is a reduction in the base of the doubly expo-
nential factor dependent on m.

6.2. A general sequence of QFFs

We again consider t QFFs formed by at a set of at most m polynomials with maximum degree d, 
however, we no longer suppose that each QFF has an EC. Instead we denote by e the number of QFFs 
with one; by Ae the set of polynomials required to define those e QFFs; and by me the size of the 
set Ae. Then analogously we define n = t − e as the number of QFFs without an EC; An = A \ Ae as 
the additional polynomials required to define them; and mn = m − me as their number.

Let A be the sequence of sets of polynomials Ai defining each formula. If QFF i is one of the e
with an EC then set Ei to be the set containing just that EC, and otherwise set Ei = Ai . As before, 
denote the irreducible bases of these by Bi and Fi .

Lemma 29. Under the assumptions above PE (A) has the (M, 2d2)-property with

M =
⌊

1
2 (mn + 1)2

⌋
+
⌊

1
2 (3me + 1)

⌋
+ 1

2 e(e− 1 + 2mn). (27)

Proof. Without loss of generality suppose the QFFs are labelled so the e QFFs with an EC come first. 
We will decompose the cross resultant set (16) as R×

1 ∪ R×
2 ∪ R×

3 where



R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 23
R×
1 = {resxn ( f , f̂ ) | ∃i, j : f ∈ Fi, f̂ ∈ F j, i < j ≤ e, f �= f̂ },

R×
2 = {resxn ( f , f̂ ) | ∃i, j : f ∈ Fi, f̂ ∈ F j, i ≤ e < j, f �= f̂ },

R×
3 = {resxn ( f , f̂ ) | ∃i, j : f ∈ Fi, f̂ ∈ F j, e < i < j, f �= f̂ }.

Then the projection set (19) may be decomposed as

PE (A) = cont(A) ∪⋃t
i=1 P Fi (Bi) ∪ Res×(F)

= (⋃e
i=1 cont(Ai) ∪ P Fi (Bi)

)
∪ (R×

3 ∪⋃t
i=e+1 cont(Ai) ∪ P Fi (Bi)

)∪ R×
1 ∪ R×

2 . (28)

(1) The first collection of sets in (28) has the 
(⌊

1
2 (3me + 1)

⌋
,2d2

)
-property. The argument is iden-

tical to the proof of Lemma 26, except that here e plays the role of t , and me the role of m.
(2) The second collection of sets in (28) refer to those with Ei = Ai . Since P Bi (Bi) = P (Bi) we see 

that the union of cont(Ai) ∪ P (Bi) for i = e +1, . . . , t contains all the polynomials in P (An) except 
for the cross-resultants of polynomials from different Bi . These are exactly given by R×

3 , and thus 
we can follow the proof of Lemma 11 to partition the second collection into 

⌊
1
2 (mn + 1)2

⌋
sets 

of combined degree 2d2.
(3) Next let us consider R×

1 . This concerns those subsets Ei with only one polynomial, and hence 
their square free bases Fi each have the (1, d)-property. Following the proof of Lemma 11 step 2 
this set of resultants may be partitioned into 1

2 e(e − 1) sets of combined degree at most 2d2.
(4) Finally we consider R×

3 . This concerns resultants of the e polynomials forming the e single poly-
nomial subsets Ei , taken with polynomials from the other subsets (together giving the set An of 
mn polynomials). There are at most emn of these. Of course, as before, we are actually dealing 
with square free bases (moving from polynomials of degree d to sets with the (1, d)-property) and 
then consider the coprime subsets (as in Lemma 11), to conclude R×

3 has the (emn, 2d2)-property.

Summing up then gives the desired result. �
Corollary 30. The bound in (27) may be improved to

M =
⌊

1
2

(
(mn + 1)2 + 3me

)⌋
+ 1

2 (e(e− 1 + 2mn)) . (29)

Proof. We have asserted that the sum of the two floors is equal to the floor of the sum minus a half. 
In both steps 1 and 2 of the proof of Lemma 29 we pair up sets of maximum combined degree d2

to get half as many with maximum combined degree 2d2. We introduce the floor of the polynomial 
one greater to cover the case with an odd number of sets to begin with. However, in the case that 
both step 1 and step 2 had an odd number of starting sets the left over couple could themselves be 
paired. Instead, if we considering combining these sets and then pairing we have the floor as stated 
in (29). �

We analyse Algorithm 1 by applying Lemma 29 once and then Lemma 11 repeatedly. As usual, the 
growth is given by Table 1, this time with M as in (29). The dominant term in the bound on cell 
count is then calculated from (11) as

22n−1d2n−1( 1
2

(
(mn + 1)2 + (3me + 1) + e(e− 1) + 2emn − 1

)
)2n−1−1m

= 22n−1
d2n−1((mn + 1)2 + (3me + 1) + e(e− 1) + 2emn − 1)2n−1−1m.

Once again, we can improve this by noting the reduction at the final lift, which will involve mn+e ≤ m
polynomials instead of m. Thus the bound becomes

22n−1
d2n−1((mn + 1)2 + (3me + 1) + e(e− 1) + 2emn − 1)2n−1−1(mn + e). (30)



24 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
6.2.1. Comparison
First we consider three extreme cases for the TTICAD algorithm:

(1) If no QFF has an EC then e = 0, me = 0, mn = m and (29) becomes � 1
2 (m + 1)2�. The latter is (9)

for sign-invariant CAD.
(2) The other unfortunate case is when e = me, i.e. all those QFFs with an EC contain no other con-

straints. In this case (29) becomes 
⌊

1
2 (e+ mn + 1)2

⌋
, which will be equal to (9) for sign-invariant 

CAD.
(3) The third extreme case is where all QFFs have an EC. Then e = t, me = m, mn = 0 and (29) be-

comes 
⌊

1
2 (3m + 1)

⌋
+ 1

2 (t − 1)t . This is the same as (18) for the restricted case of TTICAD studied 
in Section 6.1.

In all three cases the general TTICAD algorithm behaves identically to those previous approaches. In 
the first two extreme cases the general TTICAD algorithm performs the same as McCallum (1998)
which produces a sign-invariant CAD. Let us demonstrate that it is superior otherwise. Assume 0 <
e < me (meaning at least one QFF has an EC and at least one such QFF has additional constraints). 
Then comparing the values of M in (9) and (29) we have:

MSI − MTTI =
⌊

1
2 (me − e)(e+ me + 2mn − 1)

⌋
.

The first factor is positive by assumption, and the second is ≥ 2. Thus the bound on the cell count for 
TTICAD is better than for sign-invariant CAD by at least a doubly exponential factor: 22n−1−1.

There is no need to compare the complexity for TTICAD in this general case to any use of McCallum
(1999). The latter can only be applied to a parent formula with an overall (possibly implicit) EC and 
the construction from the previous subsection would only be possible when e = t: the case of the 
previous subsection for which we have already concluded the superiority of TTICAD.

It is now clear that the extension to general QFFs provided by this paper is a more important 
contribution than the restricted case of Bradford et al. (2013a), even though the former has a lower 
complexity bound:

• In the restricted case TTICAD was an improvement on the best available alternative projection 
operator, P E(A) from McCallum (1999), but its improvements were to the base of a double expo-
nential factor.

• Outside of this restricted case (and the two other extreme cases) TTICAD offers a complexity 
improvement to a double exponent when compared with the best available alternative projection 
operator, P (A) from McCallum (1998).

7. Our implementation in MAPLE

There are various implementations of CAD already available including: Mathematica (Strzeboński, 
2006, 2010); Qepcad (Brown, 2003); the Redlog package for Reduce (Seidl and Sturm, 2003); the
RegularChains Library (Chen et al., 2009b) for Maple, and SyNRAC (Yanami and Anai, 2006) (an-
other package for Maple).

None of these can (currently) be used to build CADs which guarantee order-invariance, a property 
required for proving the correctness of our TTICAD algorithm. Hence we have built our own CAD 
implementation in order to obtain experimental results for our ideas.

7.1. ProjectionCAD

Our implementation is a third party Maple package which we call ProjectionCAD. It gathers 
together algorithms for producing CADs via projection and lifting to complement the CAD commands 
which ship with Maple and use the alternative approach based on the theory of regular chains and 
triangular decomposition.



R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 25
> f := x^2+y^2-1:

> cad := CADFull([f], vars, method=McCallum, output=piecewise);⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SP x < −1⎧⎪⎨
⎪⎩

SP y < 0

SP y = 0

SP 0 < y

x = −1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

SP y < −√−x2 + 1

SP y = −√−x2 + 1

SP And
(
−√−x2 + 1 < y, y <

√−x2 + 1
)

SP y = +√−x2 + 1

SP
√−x2 + 1 < y

And (−1 < x, x < 1)

⎧⎪⎨
⎪⎩

SP y < 0

SP y = 0

SP 0 < y

x = 1

SP 1 < x

> CADNumCellsInPiecewise(cad);
13

Fig. 7. An example of using ProjectionCAD to build a sign-invariant CAD for the unit circle. The output is as displayed in
Maple, but with sample points replaced by SP for brevity.

All the projection operators discussed in Sections 2 and 3 have been implemented and so
ProjectionCAD can produce CADs which are sign-invariant, order-invariant, invariant with respect 
to a declared EC, and truth table invariant. Stack generation (step 29 in Algorithm 1) is achieved using 
an existing command from the RegularChains package, described fully in Section 5.2 of Chen et 
al. (2009b). To use this we must first process the input to satisfy the assumptions of that algorithm: 
that polynomials are co-prime and square-free when evaluated on the cell (separate above the cell in 
the language of regular chains). This is achieved using other commands from the RegularChains
library.

Utilising the RegularChains code like this means that ProjectionCAD can represent and 
present CADs in the same way. In particular this allows for easy comparison of CADs from the differ-
ent implementations; the use of existing tools for studying the CADs; and the ability to display CADs 
to the user in the easy to understand piecewise representation (Chen et al., 2009a). Fig. 7 shows 
an example of the package in use.

Unlike Qepcad, ProjectionCAD has an implementation of delineating polynomials (actually the 
minimal delineating polynomials of Brown, 2005) and so it can solve certain problems without unnec-
essary warnings. It is also the only CAD implementation that can reproduce the theoretical algorithm
CADW.

Other notable features of ProjectionCAD include commands to present the different formula-
tions of problems for the algorithms and heuristics to help choose between these. For more details 
on ProjectionCAD and the algorithms implemented within see England et al. (2014d), while the 
package itself is freely available from the authors along with documentation and examples demon-
strating the functionality. To run the code users need a version of Maple and the RegularChains
Library.

7.2. Minimising failure of TTICAD

Algorithm 1 was kept simple to aid readability and understanding. Our implementation does make 
some extra refinements. Most of these are trivial, such as removing constants from the set of projec-
tion polynomials or when taking coefficients in order of degree, stopping if the ones already included 
can be shown not to vanish simultaneously.



26 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
The well-orientedness conditions can often be overly cautious. Brown (2005) discussed cases 
where non-well oriented input can still lead to an order-invariant CAD. Similarly here, we can some-
times allow the nullification of an EC on a positive dimensional cell. Define the excluded projection 
polynomials for each i as:

ExclPEi (Ai) := P (Ai) \ P Ei (Ai) (31)

= {coeffs(g),discxn (g), resxn (g, ĝ) | g, ĝ ∈ Ai \ Ei, g �= ĝ}.
Note that the total set of excluded polynomials from P (A) will include all the entries of the 
ExclPEi (Ai) as well as missing cross resultants of polynomials in Ai \ Ei with polynomials from 
A j �= Ai .

Lemma 31. Let f i be an EC which vanishes identically on a cell c ∈ D′ constructed during Algorithm 1. If all 
polynomials in ExclPEi (Ai) are constant on c then any g ∈ Ai \ Ei will be delineable over c.

Proof. Suppose first that Ai and Ei satisfy the simplifying conditions from Section 3.1. Rearranging 
(31) we see P (Ai) = P Ei (Ai) ∪ ExclPEi (Ai). However, given the conditions of the lemma, this is equiv-
alent (after the removal of constants which do not affect CAD construction) to P Ei (Ai) on c. So here 
P (Ai) is a subset of PE (A) and we can conclude by Theorem 4 that all elements of Ai vanish identi-
cally on c or are delineable over c.

We can draw the same conclusion in the more general case of Ai and Ei because P (Ai) = Ci ∪
P Fi (Bi) ∪ ExclPFi (Bi) ⊆P. �

Hence Lemma 31 allows us to extend Algorithm 1 to deal safely with such cases. Although we 
cannot conclude sign-invariance we can conclude delineability and so instead of returning failure 
we can proceed by extending the lifting set Lc to the full set of polynomials (similar to the case 
of nullification on a cell of dimension zero dealt with in step 26 of Algorithm 1). In particular, this 
allows for ECs f i which do not have main variable xn . Our implementation makes use of this.

Note that the widening of the lifting step here (and also in the case of the zero dimensional cell) 
is for the generation of the stack over a single cell. The extension is only performed for the necessary 
cells thus minimising the cell count while maximising the success of the algorithm, as shown in 
Example 32. Since a polynomial cannot be nullified everywhere such case distinction will certainly 
decrease the amount of lifting.

Example 32. Consider the polynomials

f = z + yw, g = yx + 1, h = w(z + 1) + 1,

the single formula f = 0 ∧ g < 0 ∧ h < 0 and assume the variable ordering x ≺ y ≺ z ≺ w . Using the
ProjectionCAD package we can build a TTICAD with 467 cells for this formula. The induced CAD 
of R3, D , has 169 cells and on five of these cells the polynomial f is nullified. On these five cells 
both y and z are zero, with x being either fixed to 0, 4 or belonging to the three intervals splitting at 
these points.

In this example ExclPE (A) = {z + 1} arising from the coefficient of h. This is a constant value of 1 
on all five of those cells. Thus the algorithm is allowed to proceed without error, lifting with respect 
to all the projection polynomials on these cells.

The lifting set varies from cell to cell in D . For example, the stack over the cell c1 ∈ D where 
x = y = z = 0 uses three cells, splitting when w = −1. This is required for a CAD invariant with 
respect to f since f = 0 on c but h changes sign when w = −1. Compare this with, for example, 
the cell c2 ∈ D where x = y = 0 and z < −1. The stack over c2 has only one cell, with w free. The 
polynomial h will change sign over this cell, but this is not relevant since f will never be zero. This 
occurs because h is included in the lifting set only for the five cells of D where f was nullified.



R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 27
In theory, we could go further and allow this extension to apply when the polynomials in 
ExclPEi (Ai) are not necessarily all constant, but have no real roots within the cell c. However, identify-
ing such cases would, in general, require answering a separate quantifier elimination question, which 
may not be trivial, and so this has yet to be implemented.

7.3. Formulating problems for TTICAD

When using Algorithm 1 various choices may be required which can have significant effects on the 
output. We briefly discuss some of these possibilities here.

7.3.1. Variable ordering
Algorithm 1 runs with an ordering on the variables. As with all CAD algorithms this ordering can 

have a large effect, even determining whether a computation is feasible. Brown and Davenport (2007)
presented problem classes where one ordering gives a constant cell count, and another a cell count 
doubly exponential in the number of variables.

Some of the ordering may already be determined. For example, when using a CAD for quanti-
fier elimination the quantified variables must be eliminated first. However, even then we are free to 
change the ordering of the free variables, or those in quantifier blocks. Various heuristics have been 
developed to help with this choice:

Brown (2004): Choose the next variable to eliminate according to the following criteria on the input, 
starting with the first and breaking ties with successive ones:

(1) lowest overall degree in the input with respect to the variable;
(2) lowest (maximum) total degree of those terms in the input in which it occurs;
(3) smallest number of terms in the input which contain the variable.

sotd (Dolzmann et al., 2004): Construct the full set of projection polynomials for each ordering and 
select the ordering whose set has the lowest sum of total degree for each of the monomials in each of 
the polynomials.
ndrr (Bradford et al., 2013b): Construct the full projection set and select the one with the lowest 
number of distinct real roots of the univariate polynomials.
fdc (Wilson et al., 2014b): Construct all full-dimensional cells for different orderings (requires no al-
gebraic number computations) and select the smallest.

The Brown heuristic perform well despite being low cost. A machine learning experiment by Huang 
et al. (2014) showed that each heuristic had classes of examples where it was superior, and that a 
machine learnt choice of heuristic can perform better than any one.

Example 33. Kahan (1987) gives a classic example for algebraic simplification in the presence of 
branch cuts. He considers a fluid mechanics problem leading to the relation

2 arccosh

(
3 + 2z

3

)
− arccosh

(
5z + 12

3(z + 4)

)
= 2 arccosh

(
2(z + 3)

√
z + 3

27(z + 4)

)
. (32)

This is true over all C except for the small teardrop region shown on the left of Fig. 8: a plot of the 
imaginary part of the difference between the two sides of (32).

Recent work described in England et al. (2013) allows for the systematic identification of semi-
algebraic formula to describe branch cuts. This, along with visualisation techniques, now forms part 
of Maple’s FunctionAdvisor (England et al., 2014c). For this example the technology produces the 
plot on the right of Fig. 8 and describes the branch cuts using 7 pairs of equations and inequalities. 
With ProjectionCAD, a sign-invariant CAD for these polynomials has 409 cells using x ≺ y and 
1143 with y ≺ x, while a TTICAD has 55 cells using x ≺ y and 39 with y ≺ x.



28 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
Fig. 8. Plots relating to equation (32) from Example 33.

So the best choice of variable ordering differs depending on the CAD algorithm used. For the 
sign-invariant CAD, all three heuristics described above identify the correct ordering, so it would 
have been best to use the cheapest, Brown. However, for the TTICAD only the more expensive ndrr
heuristic selects the correct ordering.

7.3.2. Equational constraint designation and logical formulation
If any QFF has more than one EC present then we must choose which to designate for special use 

in Algorithm 1. As with the variable ordering choice, this leads to two different projection sets which 
could be compared using the sotd and ndrr measures.

However, note that this situation actually offers more choice than just the designation. If φi had 
two ECs then it would be admissible to split it into two QFFs φi,1, φi,2 with one EC assigned to each 
and the other constraints partitioned between them in any manner. Admissible because any TTICAD 
for φi,1, φi,2 is also a TTICAD for φi .

This is a generalisation of the following observation: given a formula φ with two ECs a CAD could 
be constructed using either the original theory of McCallum (1999) or the TTICAD algorithm applied 
to two QFFs. The latter option would certainly lead to more projection polynomials. However, a spe-
cific EC may have a comparatively large number of intersections with another constraint, in which 
case, separating them into different QFFs could still offer benefits (with the increase in projection 
polynomials offset by them having less real roots). The following is an example of such a situation.

Example 34. Assume x ≺ y and consider again � := ( f1 = 0 ∧ g1 > 0) ∨ ( f2 = 0 ∧ g2 < 0) but this time 
with polynomials below. These are plotted in Fig. 9 where the solid curve is f1, the solid line g1, the 
dashed curve f2 and the dashed line g2.

f1 := (y − 1) − x3 + x2 + x, g1 := y − x
4 + 1

2 ,

f2 := (−y − 1) − x3 + x2 + x, g2 := −y − x
4 + 1

2 .

If we use the algorithm by McCallum (1999) with the implicit EC f1 f2 = 0 designated then a CAD 
is constructed which identifies all the intersections except for g1 with g2. This is visualised by the 
plot on the left while the plot on the right relates to a TTICAD with two QFFs. In this case only three 
0-cells are identified, with the intersections of g2 with f1 and g1 with f2 ignored. The TTICAD has 31 
cells, compared to 39 cells for the other two. Both sotd and ndrr identify the smaller CAD, while
Brown would not discriminate.

More details on the issues around the logical formulation of problems for TTICAD are given by 
Bradford et al. (2013b).

7.3.3. Preconditioning input QFFs
Another option available before using Algorithm 1 is to precondition the input. Buchberger and 

Hong (1991) conducted experiments to see if Gröbner basis techniques could help CAD. They consid-



R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 29
Fig. 9. Plots visualising the CADs described for Example 34.

ered replacing any input polynomials which came from equations by a purely lexicographical Gröbner 
basis for them. In Wilson et al. (2012b) this idea was investigated further with a larger base of 
problems tested and the idea extended to include Gröbner reduction on the other polynomials. The 
preconditioning was shown to be highly beneficial in some cases, but detrimental in others. A simple 
metric was posited and shown to be a good indicator of when preconditioning was useful.

Bradford et al. (2013b) consider using Gröbner preconditioning for TTICAD by constructing bases 
for each QFF. This can produce significant reductions in the TTICAD cell counts and timings. The 
benefits are not universal, but measuring the sotd and ndrr of the projection polynomials gives 
suitable heuristics.

7.3.4. Summary
We have highlighted choices we may need to make before using Algorithm 1 and its implemen-

tation in ProjectionCAD. The heuristics discussed are also available in that package. An issue of 
problem formulation not described in the mathematical derivation of the problem itself. We note that 
this can have a great effect on the tractability of using CAD (see Wilson et al., 2013 for example).

For the experimental results in Section 8 we use the specified variable ordering for a problem if it 
has one and otherwise test all possible orderings. If there are questions of logical formulation or EC 
designation we use the heuristics discussed here. No Gröbner preconditioning was used as the aim is 
to analyse the TTICAD theory itself.

It is important to note that the heuristics are just that, and as such can be misled by certain exam-
ples. Also, while we have considered these issues individually they of course intersect. For example, 
the TTICAD formulation with two QFFs was the best choice in Example 34 but if we had assumed 
the other variable ordering then a single QFF is superior. Taken together, all these choices of formu-
lation can become combinatorially overwhelming and so methods to reduce this, such as the greedy 
algorithm in Dolzmann et al. (2004) or the suggestion in Section 4 of Bradford et al. (2013b) are 
important.

8. Experimental results

8.1. Description of experiments

Our timings were obtained on a Linux desktop (3.1 GHz Intel processor, 8.0 Gb total memory) with
Maple 16 (command line interface), Mathematica 9 (graphical interface) and Qepcad-B 1.69. For each 
experiment we produce a CAD and give the time taken and cell count. The first is an obvious metric 
while the second is crucial for applications performing operations on each cell.

For Qepcad the options +N500000000 and +L200000 were provided, the initialisation included 
in the timings and ECs declared when possible (when they are explicit or formed by the product of 
ECs for the individual QFFs). In Mathematica the output is not a CAD but a formula constructed from 



30 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
one Strzeboński (2010), with the actual CAD not available to the user. Cell counts for the algorithms 
were provided by the author of the Mathematica code.

TTICADs are calculated using our ProjectionCAD implementation described in Section 7. The 
results in this section are not presented to claim that our implementation is state of the art, but to 
demonstrate the power of the TTICAD theory over the conventional theory, and how it can allow even 
a simple implementation to compete. Hence the cell counts are of most interest.

The time is measured to the nearest tenth of a second, with a time out (T) set at 5000 sec-
onds. When F occurs it indicates failure due to a theoretical reason such as not well-oriented 
(in either sense). The occurrence of Err indicates an error in an internal subroutine of Maple’s
RegularChains package, used by ProjectionCAD. This error is not theoretical but a bug, which 
will be fixed shortly.

We started by considering examples originating from Buchberger and Hong (1991). However these 
problems (and most others in the literature) involve conjunctions of conditions, chosen as such to 
make them amenable to existing technologies. These problems can be tackled using TTICAD, but they 
do not demonstrate its full strength. Hence we introduce some new examples. The first set, those 
denoted with a †, are adapted from Buchberger and Hong (1991) by turning certain conjunctions into 
disjunctions. The second set were generated randomly as examples with two QFFs, only one of which 
has an EC (using random polynomials in 3 variables of degree at most 2).

Two further examples came from the application of branch cut analysis for simplification. We in-
cluded Example 33 along with the problem induced by considering the validity of the double angle 
formulae for arcsin. Finally we considered the worked examples from Section 1.3 and the generalisa-
tion to three dimensions presented in Example 25. Note that A and B following the problem name 
indicate different variable orderings. Full details for all examples can be found in the CAD repository 
(Wilson et al., 2012a) available freely at http :/ /dx .doi .org /10 .15125 /BATH-00069.

8.2. Results

We present our results in Table 2. For each problem we give the name used in the repository, n
the number of variables, d the maximum degree of polynomials involved and t the number of QFFs 
used for TTICAD. We then give the time taken (T) and number of cells of Rn produced (C) by each 
algorithm.

We first compare our TTICAD implementation with the sign-invariant CAD generated using
ProjectionCAD with McCallum’s projection operator. Since these use the same architecture the 
comparison makes clear the benefits of the TTICAD theory. The experiments confirm the fact that, 
since each cell of a TTICAD is a superset of cells from a sign-invariant CAD, the cell count for TTICAD 
will always be less than or equal to that of a sign-invariant CAD produced using the same implemen-
tation. Ellipse† A is not well-oriented in the sense of McCallum (1998), and so both methods return
FAIL. Solotareff† A and B are well-oriented in this sense but not in the stronger sense of Definition 18
and hence TTICAD fails while the sign-invariant CADs can be produced. The only example with equal 
cell counts is Collision† A in which the non-ECs were so simple that the projection polynomials were 
unchanged. Examining the results for the worked examples and the 3d generalisation we start to 
see the true power of TTICAD. In 3D Example A we see a 759-fold reduction in time and a 50-fold 
reduction in cell count.

We next compare our implementation of TTICAD with the state of the art in CAD: Qepcad (Brown, 
2003), Maple (Chen et al., 2009b) and Mathematica (Strzeboński, 2006, 2010). Mathematica is the 
quickest, however TTICAD often produces fewer cells. We note that Mathematica’s algorithm uses 
powerful heuristics and so actually used Gröbner bases on the first two problems, causing the cell 
counts to be so low. When all implementations succeed TTICAD usually produces far fewer cells than
Qepcad or Maple, especially impressive given Qepcad is producing partial CADs for the quantified 
problems, while TTICAD is only working with the polynomials involved.

Reasons for the TTICAD implementation struggling to compete on speed may be that the Math-

ematica and Qepcad algorithms are implemented directly in C, have had more optimisation, and in 
the case of Mathematica use validated numerics for lifting (Strzeboński, 2006). However, the strong 
performance in cell counts is very encouraging, both due its importance for applications where CAD 

http://dx.doi.org/10.15125/BATH-00069


R.Bradford
et

al./JournalofSym
bolic

Com
putation

76
(2016)

1–35
31

Maple Mathematica

T C T C

– Err 0.0 3
50.2 2795 0.0 3
23.0 1267 0.1 657
48.1 1517 0.0 191

– Err 0.1 601
50.2 2795 0.1 549
23.0 1267 0.2 808
48.1 1517 0.2 1156

1940 81 193 11.2 80 111
T – 2911 16 603 131

1014 54 037 0.1 260
2952 154 527 0.1 762

376 7895 3.6 7171
T – 592 1 234 601

15.2 409 0.0 72
154 1143 0.1 278
3.3 225 0.0 175
7.8 393 0.0 79
6.3 317 0.0 24
7.2 377 0.0 175
6.3 317 0.1 372
7.2 377 0.1 596

– Err 0.1 44
– Err 0.1 135

25.7 1535 0.2 579
173 8023 0.8 2551
77.9 5061 0.7 3815
258 12 031 1.3 4339
104 6241 0.9 5041
Table 2
Comparing TTICAD to other CAD types and other CAD implementations.

Problem Full-CAD TTICAD Qepcad

Name n d t T C T C T C

IntA 3 2 1 360 3707 1.7 269 4.5 825
IntB 3 2 1 332 2985 1.5 303 4.5 803
RanA 3 3 1 269 2093 4.5 435 4.6 1667
RanB 3 3 1 443 4097 8.1 711 5.4 2857
Int†A 3 2 2 360 3707 68.7 575 4.8 3723
Int†A 3 2 2 332 2985 70.0 601 4.7 3001
Ran†A 3 3 2 269 2093 223 663 4.6 2101
Ran†B 3 3 2 443 4097 268 1075 142 4105
Ell†A 5 4 2 – F – F 292 500 609
Ell†B 5 4 2 T – T – T –
Solo†A 4 3 2 678 54 037 46.1 F 4.9 20 307
Solo†B 4 3 2 2009 154 527 123 F 6.3 87 469
Coll†A 4 4 2 265 8387 267 8387 5.0 7813
Coll†B 4 4 2 – Err – Err T –
Ex33A 2 4 7 10.7 409 0.3 55 4.8 261
Ex33B 2 4 7 87.9 1143 0.3 39 4.8 1143
AsinA 2 4 4 2.5 225 0.3 57 4.6 225
AsinB 2 4 4 6.5 393 0.2 25 4.5 393
Ex�A 2 2 2 5.7 317 1.2 105 4.7 249
Ex�B 2 2 2 6.1 377 1.5 153 4.5 329
Ex�A 2 2 2 5.7 317 1.6 183 4.9 317
Ex�B 2 2 2 6.1 377 1.9 233 4.8 377
Ex25A 3 3 2 3796 5453 5.0 109 5.3 739
Ex25B 3 3 2 3405 6413 5.8 153 5.7 1009
Rand1 3 2 2 16.4 1533 76.8 1533 4.9 1535
Rand2 3 2 2 838 7991 132 2911 5.2 8023
Rand3 3 2 2 259 8889 98.1 4005 5.3 8913
Rand4 3 2 2 1442 11 979 167 4035 5.4 12 031
Rand5 3 2 2 310 11 869 110 4905 5.5 11 893



32 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
Table 3
Table detailing the number of cells in CADs constructed to analyse the truth of the formulae from Example 35.

j � j F j � j

ECCAD TTICAD Qepcad CADFull TTICAD Qepcad

2 145 105 249 317 183 317
3 237 157 509 695 259 695
4 329 209 849 1241 335 1241
5 421 261 1269 1979 411 1979
6 513 313 1769 2933 487 2933

is part of a wider algorithm (such as branch cut analysis) and for the potential if TTICAD theory were 
implemented elsewhere.

8.3. The increased benefit of TTICAD

We finish by demonstrating that the benefit of TTICAD over the existing theory should increase 
with the number of QFFs and that this benefit is much more pronounced if at least one of these does 
not have an EC.

Example 35. We consider a family of examples (to which our worked examples belong). Assume x ≺ y
and for j a non-negative integer define

f j+1 := (x − 4 j)2 + (y − j)2 − 1, g j+1 := (x − 4 j)(y − j) − 1
4 ,

F j+1 := { fk, gk}k=1... j+1, � j+1 :=∨ j+1
k=1( fk = 0 ∧ gk < 0),

� j+1 :=
(∨ j

k=1( fk = 0 ∧ gk < 0)
)

∨ ( f j+1 < 0 ∧ g j+1 < 0).

Then �2 is � from equation (2) and �2 is � from equation (3). Table 3 shows the cell counts for 
various CADs produced for studying the truth of the formulae, and Fig. 10 plots these values.

Both �i and �i may be studied by a sign-invariant CAD for the polynomials Fi , shown in the 
column marked CADFull. The remaining CADs are specific to one formula. For each formula a TTI-
CAD has been constructed using Algorithm 1 on the natural sub-formulae created by the disjunctions, 
while the �i have also had a CAD constructed using the theory of ECs alone. This was simulated by 
running Algorithm 1 on the single formula declaring the product of the f i s as an EC (column marked
ECCAD). All the proceeding CADs were constructed with ProjectionCAD. For each formula a CAD 
has also been created with Qepcad, with the product of f i declared as an EC for �i .

We see that the size of a sign-invariant CAD is grows much faster than the size of a TTICAD. For 
a problem with fixed variable ordering the TTICAD theory seems to allow for linear growth in the 
number of formulae. Considering the ECCAD and Qepcad results shows that when all QFFs have an 
EC (the �i ) using the implicit EC also makes significant savings. However, it is only when using the 
improved lifting discussed in Section 5 that these savings restrict the output to linear growth. In the 
case where at least one QFF does not have an EC (the �i ) the existing theory of ECs cannot be used. 
So while the comparative benefit of TTICAD over sign-invariant CAD is slightly less, the benefit when 
comparing with the best available previous theory is far greater.

9. Conclusions

We have defined truth table invariant CADs and by building on the theory of equational constrains 
have provided an algorithm to construct these efficiently. We have extended the our initial work 
in ISSAC 2013 so that it applies to a general sequence of formulae. The new complexity analyses 
show that the benefit over previously applicable CAD projection operators is even greater for the new 
problems now covered.

The algorithm has been implemented in Maple giving promising experimental results. TTICADs 
in general have much fewer cells than sign-invariant CADs using the same implementation and we 



R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 33
Fig. 10. Plots of the results from Table 3. The x-axis measures j and the y-axis the number of cells. On the left are the 
algorithms relating to � j which from top to bottom are: CADFull, Qepcad, ECCAD, TTICAD. On the right are the algorithms 
relating to � j which from top to bottom are: CADFull and TTICAD.

showed that this allows even a simple implementation of TTICAD to compete with the state of the art 
CAD implementations. For many problems the TTICAD theory offers the smallest truth-invariant CAD 
for a parent formula, and there are also classes of problems for which TTICAD is exactly the desired 
structure. The benefits of TTICAD increase with the number of QFFs in a problem and is magnified if 
there is a QFF with no EC (as then the previous theory is not applicable).

9.1. Future work

There is scope for optimising the algorithm and extending it to allow less restrictive input. 
Lemma 31 gives one extension that is included in our implementation while other possibilities in-
clude removing some of the caution implied by well-orientedness, analogous to Brown (2005). Of 
course, the implementation of TTICAD used here could be optimised in many ways, but more desir-
able would be for TTICAD to be incorporated into existing state of the art CAD implementations. In 
fact, since the ISSAC 2013 publication Bradford et al. (2014) have presented an algorithm to build 
TTICADs using the RegularChains technology in Maple and work continues in dealing with issues 
of problem formulation for this approach (England et al., 2014a, 2014b).

We see several possibilities for the theoretical development of TTICAD:

• Can we apply the theory recursively instead of only at the top level to make use of bi-equational 
constraints? For example by widening the projection operator to allow enough information to 
conclude order-invariance, as in McCallum (2001).
When doing this we may also consider further improvements to the lifting phase as recently 
discussed in England et al. (2015).

• Can we make use of the ideas behind partial CAD to avoid unnecessary lifting once the truth 
value of a QFF on a cell is determined?

• Can we implement the lifting algorithm in parallel?
• Can we modify the lifting algorithm to only return those cells required for the application? Ap-

proaches which restrict the output to cells of a certain dimension, or cells on a certain variety, 
are given by Wilson et al. (2014a).

• Can anything be done when the input is not well oriented?

Acknowledgements

We are grateful to A. Strzeboński for assistance in performing the Mathematica tests and to the 
anonymous referees of both this and our ISSAC 2013 paper for their useful comments. We also thank 
the rest of the Triangular Sets seminar at Bath (A. Locatelli, G. Sankaran and N. Vorobjov) for their 



34 R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35
input, and the team at Western University (C. Chen, M. Moreno Maza, R. Xiao and Y. Xie) for access 
to their Maple code and helpful discussions.

References

Arnon, D., 1988. A cluster-based cylindrical algebraic decomposition algorithm. J. Symb. Comput. 5 (1–2), 189–212.
Arnon, D., Collins, G., McCallum, S., 1984a. Cylindrical algebraic decomposition I: the basic algorithm. SIAM J. Comput. 13, 

865–877.
Arnon, D., Collins, G., McCallum, S., 1984b. Cylindrical algebraic decomposition II: an adjacency algorithm for the plane. SIAM J. 

Comput. 13, 878–889.
Arnon, D., Collins, G., McCallum, S., 1988. An adjacency algorithm for cylindrical algebraic decompositions of three-dimensional 

space. J. Symb. Comput. 5 (1/2), 163–187.
Basu, S., Pollack, R., Roy, M., 1996. On the combinatorial and algebraic complexity of quantifier elimination. J. ACM 43 (6), 

1002–1045.
Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson, D., 2014. Truth table invariant cylindrical algebraic 

decomposition by regular chains. In: CASC ’14. Springer, pp. 44–58.
Bradford, R., Davenport, J.H., 2002. Towards better simplification of elementary functions. In: ISSAC ’02. ACM, pp. 16–22.
Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D., 2013a. Cylindrical algebraic decompositions for boolean 

combinations. In: ISSAC ’13. ACM, pp. 125–132.
Bradford, R., Davenport, J.H., England, M., Wilson, D., 2013b. Optimising problem formulations for cylindrical algebraic decom-

position. In: Intelligent Computer Mathematics. In: LNAI, vol. 7961. Springer, Berlin, Heidelberg, pp. 19–34.
Brown, C., 1998. Simplification of truth-invariant cylindrical algebraic decompositions. In: ISSAC ’98. ACM, pp. 295–301.
Brown, C., 2001. Improved projection for cylindrical algebraic decomposition. J. Symb. Comput. 32 (5), 447–465.
Brown, C., 2003. A program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bull. 37 (4), 97–108.
Brown, C., 2004. Companion to the tutorial, Cylindrical algebraic decomposition. In: ISSAC ’04. http://www.usna.edu/Users/cs/

wcbrown/research/ISSAC04/handout.pdf.
Brown, C., 2005. The McCallum projection, lifting, and order-invariance. Tech. Rep. U.S. Naval Academy, Computer Science De-

partment.
Brown, C., 2013. Constructing a single open cell in a cylindrical algebraic decomposition. In: ISSAC ’13. ACM, pp. 133–140.
Brown, C., Davenport, J.H., 2007. The complexity of quantifier elimination and cylindrical algebraic decomposition. In: ISSAC ’07. 

ACM, pp. 54–60.
Brown, C., Kahoui, M.E., Novotni, D., Weber, A., 2006. Algorithmic methods for investigating equilibria in epidemic modelling. J. 

Symb. Comput. 41, 1157–1173.
Brown, C., McCallum, S., 2005. On using bi-equational constraints in CAD construction. In: ISSAC ’05. ACM, pp. 76–83.
Buchberger, B., Hong, H., 1991. Speeding up quantifier elimination by Gröbner bases. Tech. Rep. 91-06. RISC, Johannes Kepler 

University.
Chen, C., Davenport, J.H., May, J., Moreno Maza, M., Xia, B., Xiao, R., Xie, Y., 2009a. User interface design for geometrical decom-

position algorithms in Maple. In: Proc. Mathematical User-Interface. 12 pp.
Chen, C., Moreno Maza, M., Xia, B., Yang, L., 2009b. Computing cylindrical algebraic decomposition via triangular decomposition. 

In: ISSAC ’09. ACM, pp. 95–102.
Collins, G., 1998. Quantifier elimination by cylindrical algebraic decomposition – 20 years of progress. In: Caviness, B., Johnson, 

J. (Eds.), Quantifier Elimination and Cylindrical Algebraic Decomposition. In: Texts & Monographs in Symbolic Computation. 
Springer-Verlag, pp. 8–23.

Collins, G., Hong, H., 1991. Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12, 299–328.
Davenport, J.H., Bradford, R., England, M., Wilson, D., 2012. Program verification in the presence of complex numbers, functions 

with branch cuts etc. In: SYNASC ’12. IEEE, pp. 83–88.
Davenport, J.H., Heintz, J., 1988. Real quantifier elimination is doubly exponential. J. Symb. Comput. 5 (1–2), 29–35.
Dolzmann, A., Seidl, A., Sturm, T., 2004. Efficient projection orders for CAD. In: ISSAC ’04. ACM, pp. 111–118.
England, M., Bradford, R., Chen, C., Davenport, J.H., Moreno Maza, M., Wilson, D., 2014a. Problem formulation for truth-table in-

variant cylindrical algebraic decomposition by incremental triangular decomposition. In: Intelligent Computer Mathematics. 
In: LNAI, vol. 8543. Springer International, pp. 45–60.

England, M., Bradford, R., Davenport, J.H., 2015. Improving the use of equational constraints in cylindrical algebraic decomposi-
tion. In: ISSAC ’15. ACM, pp. 165–172.

England, M., Bradford, R., Davenport, J.H., Wilson, D., 2013. Understanding branch cuts of expressions. In: Intelligent Computer 
Mathematics. In: LNAI, vol. 7961. Springer, Berlin, Heidelberg, pp. 136–151.

England, M., Bradford, R., Davenport, J.H., Wilson, D., 2014b. Choosing a variable ordering for truth-table invariant cylindri-
cal algebraic decomposition by incremental triangular decomposition. In: Mathematical Software – ICMS 2014. In: LNCS, 
vol. 8592. Springer, Heidelberg, pp. 450–457.

England, M., Cheb-Terrab, E., Bradford, R., Davenport, J.H., Wilson, D., 2014c. Branch cuts in Maple 17. ACM CCA 187 (1), 24–27.
England, M., Wilson, D., Bradford, R., Davenport, J.H., 2014d. Using the Regular Chains Library to build cylindrical algebraic 

decompositions by projecting and lifting. In: Mathematical Software – ICMS 2014. In: LNCS, vol. 8592. Springer, Heidelberg, 
pp. 458–465.

Erascu, M., Hong, H., 2014. Synthesis of optimal numerical algorithms using real quantifier elimination (Case study: square root 
computation). In: ISSAC ’14. ACM, pp. 162–169.

http://refhub.elsevier.com/S0747-7171(15)00100-5/bib41726E6F6E31393838s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib41434D383449s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib41434D383449s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib41434D38344949s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib41434D38344949s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib41434D3838s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib41434D3838s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4250523936s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4250523936s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib424344454D573134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib424344454D573134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib42443032s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4244454D573133s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4244454D573133s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib424445573133s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib424445573133s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib42726F776E31393938s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib42726F776E3230303161s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib42726F776E3230303361s1
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib42726F776E3230303561s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib42726F776E3230303561s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib42726F776E32303133s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib42443037s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib42443037s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib42454E573036s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib42454E573036s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib424D3035s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib42483931s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib42483931s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib43444D4D5858583039s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib43444D4D5858583039s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib434D58593039s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib434D58593039s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib436F6C6C696E7331393938s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib436F6C6C696E7331393938s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib436F6C6C696E7331393938s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib43483931s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib444245573132s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib444245573132s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib44483838s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4453533034s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib454243444D573134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib454243444D573134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib454243444D573134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4542443135s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4542443135s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib454244573133s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib454244573133s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib454244573134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib454244573134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib454244573134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib45432D544244573134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib455742443134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib455742443134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib455742443134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib45483134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib45483134s1


R. Bradford et al. / Journal of Symbolic Computation 76 (2016) 1–35 35
Fotiou, I., Parrilo, P., Morari, M., 2005. Nonlinear parametric optimization using cylindrical algebraic decomposition. In: CDC–ECC 
’05, pp. 3735–3740.

Han, J., Dai, L., Xia, B., 2014. Constructing fewer open cells by gcd computation in CAD projection. In: ISSAC ’14. ACM, 
pp. 240–247.

Hong, H., 1990. An improvement of the projection operator in cylindrical algebraic decomposition. In: ISSAC ’90. ACM, 
pp. 261–264.

Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L., Bridge, J., 2014. Applying machine learning to the problem of 
choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition. In: Intelligent Computer Mathe-
matics. In: LNAI, vol. 8543. Springer International, pp. 92–107.

Iwane, H., Yanami, H., Anai, H., Yokoyama, K., 2009. An effective implementation of a symbolic–numeric cylindrical algebraic 
decomposition for quantifier elimination. In: SNC ’09, pp. 55–64.

Jovanovic, D., de Moura, L., 2012. Solving non-linear arithmetic. In: IJCAR. In: LNCS, vol. 7364. Springer, pp. 339–354.
Kahan, W., 1987. Branch cuts for complex elementary functions. In: Iserles, A., Powell, M. (Eds.), Proc. State of Art in Numerical 

Analysis. Clarendon Press, pp. 165–211.
Lazard, D., 1994. An improved projection for cylindrical algebraic decomposition. In: Algebraic Geometry and Its Applications: 

Collections of Papers from Abhyankar’s 60th Birthday Conference. Springer, Berlin, pp. 467–476.
McCallum, S., 1985. An improved projection operation for cylindrical algebraic decomposition. PhD thesis (Computer Sciences 

Tech. Rep. 578). Univ. Wisconsin–Madison.
McCallum, S., 1988. An improved projection operation for cylindrical algebraic decomposition of three-dimensional space. J. 

Symb. Comput. 5 (1–2), 141–161.
McCallum, S., 1998. An improved projection operation for cylindrical algebraic decomposition. In: Caviness, B., Johnson, J. (Eds.), 

Quantifier Elimination and Cylindrical Algebraic Decomposition. In: Texts & Monographs in Symbolic Computation. Springer-
Verlag, pp. 242–268.

McCallum, S., 1999. On projection in CAD-based quantifier elimination with equational constraint. In: ISSAC ’99. ACM, 
pp. 145–149.

McCallum, S., 2001. On propagation of equational constraints in CAD-based quantifier elimination. In: ISSAC ’01. ACM, 
pp. 223–231.

Paulson, L., 2012. Metitarski: past and future. In: Interactive Theorem Proving. In: LNCS, vol. 7406. Springer, pp. 1–10.
Phisanbut, N., Bradford, R., Davenport, J.H., 2010. Geometry of branch cuts. ACM CCA 44 (3), 132–135.
Schwartz, J., Sharir, M., 1983. On the “piano-movers” problem: II. General techniques for computing topological properties of 

real algebraic manifolds. Adv. Appl. Math. 4, 298–351.
Seidl, A., Sturm, T., 2003. A generic projection operator for partial cylindrical algebraic decomposition. In: ISSAC ’03. ACM, 

pp. 240–247.
Strzeboński, A., 2006. Cylindrical algebraic decomposition using validated numerics. J. Symb. Comput. 41 (9), 1021–1038.
Strzeboński, A., 2010. Computation with semialgebraic sets represented by cylindrical algebraic formulas. In: ISSAC ’10. ACM, 

pp. 61–68.
Strzeboński, A., 2014. Cylindrical algebraic decomposition using local projections. In: ISSAC ’14. ACM, pp. 389–396.
Wilson, D., Bradford, R., Davenport, J.H., 2012a. A repository for CAD examples. ACM CCA 46 (3), 67–69.
Wilson, D., Bradford, R., Davenport, J.H., 2012b. Speeding up cylindrical algebraic decomposition by Gröbner bases. In: Intelligent 

Computer Mathematics. In: LNAI, vol. 7362. Springer, pp. 280–294.
Wilson, D., Bradford, R., Davenport, J.H., England, M., 2014a. Cylindrical algebraic sub-decompositions. Math. Comput. Sci. 8, 

263–288.
Wilson, D., Davenport, J.H., England, M., Bradford, R., 2013. A “piano movers” problem reformulated. In: SYNASC ’13. IEEE, 

pp. 53–60.
Wilson, D., England, M., Bradford, R., Davenport, J.H., 2014b. Using the distribution of cells by dimension in a cylindrical algebraic 

decomposition. In: SYNASC ’14. IEEE, pp. 53–60.
Yanami, H., Anai, H., 2006. Development of SyNRAC. In: Proc. 6th Intl. Conf. on Computational Science: Part II. ICCS ’06. In: 

LNCS, vol. 3992, pp. 462–469.

http://refhub.elsevier.com/S0747-7171(15)00100-5/bib46504D3035s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib46504D3035s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4844583134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4844583134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib486F6E6731393930s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib486F6E6731393930s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4845574450423134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4845574450423134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4845574450423134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib495941593039s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib495941593039s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4A644D3132s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4B6168616E3837s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4B6168616E3837s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4C617A61726431393934s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4C617A61726431393934s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4D6343616C6C756D31393835s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4D6343616C6C756D31393835s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4D6343616C6C756D31393838s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4D6343616C6C756D31393838s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4D6343616C6C756D31393938s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4D6343616C6C756D31393938s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4D6343616C6C756D31393938s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4D6343616C6C756D31393939s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4D6343616C6C756D31393939s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4D6343616C6C756D32303031s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib4D6343616C6C756D32303031s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib5061756C736F6E32303132s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib5042443130s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib535338334949s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib535338334949s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib53533033s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib53533033s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib5374727A65626F6E736B6932303036s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib5374727A65626F6E736B6932303130s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib5374727A65626F6E736B6932303130s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib5374727A65626F6E736B693230313461s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib57424431325F4558s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib57424431325F4742s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib57424431325F4742s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib574244453134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib574244453134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib574445423133s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib574445423133s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib574542443134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib574542443134s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib59413036s1
http://refhub.elsevier.com/S0747-7171(15)00100-5/bib59413036s1

	Truth table invariant cylindrical algebraic decomposition
	1 Introduction
	1.1 Background on CAD
	1.2 TTICAD
	1.3 Worked examples
	1.4 Contributions and plan of the paper

	2 Existing CAD projection operators
	2.1 Review: sign-invariant CAD
	2.2 Review: CAD invariant with respect to an equational constraint
	2.3 New complexity analyses

	3 A projection operator for TTICAD
	3.1 New projection operator
	3.2 Comparison with using a single implicit equational constraint
	3.3 Worked examples

	4 Algorithm
	4.1 Description and proof
	4.2 TTICAD via the ResCAD set

	5 Utilising projection theory for improvements to lifting
	5.1 A ﬁner check for well-orientedness
	5.2 Smaller lifting sets

	6 Complexity analyses of new contributions
	6.1 When every QFF has an equational constraint
	6.1.1 With a parent formula and implicit EC-CAD
	6.1.2 Comparison

	6.2 A general sequence of QFFs
	6.2.1 Comparison


	7 Our implementation in Maple
	7.1 ProjectionCAD
	7.2 Minimising failure of TTICAD
	7.3 Formulating problems for TTICAD
	7.3.1 Variable ordering
	7.3.2 Equational constraint designation and logical formulation
	7.3.3 Preconditioning input QFFs
	7.3.4 Summary


	8 Experimental results
	8.1 Description of experiments
	8.2 Results
	8.3 The increased beneﬁt of TTICAD

	9 Conclusions
	9.1 Future work

	Acknowledgements
	References


