Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic
geometry, used primarily for eliminating quantifiers over the reals and
studying semi-algebraic sets. In this paper we introduce cylindrical algebraic
sub-decompositions (sub-CADs), which are subsets of CADs containing all the
information needed to specify a solution for a given problem.
We define two new types of sub-CAD: variety sub-CADs which are those cells in
a CAD lying on a designated variety; and layered sub-CADs which have only those
cells of dimension higher than a specified value. We present algorithms to
produce these and describe how the two approaches may be combined with each
other and the recent theory of truth-table invariant CAD.
We give a complexity analysis showing that these techniques can offer
substantial theoretical savings, which is supported by experimentation using an
implementation in Maple.Comment: 26 page