246 research outputs found

    Organic-Conventional Dairy Systems Trial in New Zealand: Four Years’ Results

    Get PDF
    The Organic-Conventional Comparative Dairy Systems trial at Massey University began in August 2001, and the organic farmlet achieved certification in August 2003. The trial is unique because it is the only comparative grassland-based open grazing dairy study in the world. The organic and conventional systems are managed individually according to best practice, and both are intensively monitored for production, animal health, and environmental impacts. The systems remained similar for the first two years, but began to diverge in the third and fourth years. Production has been 10-20% lower on the organic farm, but environmental impacts appear to be less than on the conventional unit, and net incomes would be similar given a 20% price premium for the organic product. Animal health issues have been manageable on the organic farmlet, and not too dissimilar from the conventional farmlet. Full results after four years of the trial will be available and presented at the conference

    Tracing Outflowing Metals in Simulations of Dwarf and Spiral Galaxies

    Full text link
    We analyze the metal accumulation in dwarf and spiral galaxies by following the history of metal enrichment and outflows in a suite of twenty high-resolution simulated galaxies. These simulations agree with the observed stellar and gas-phase mass-metallicity relation, an agreement that relies on large fractions of the produced metals escaping into the CGM. For instance, in galaxies with Mvir ~ 1e9.5 -- 1e10 solar masses, we find that about ~ 85% of the available metals are outside of the galactic disk at z = 0, although the fraction decreases to a little less than half in Milky Way-mass galaxies. In many cases, these metals are spread far beyond the virial radius. We analyze the metal deficit within the ISM and stars in the context of previous work tracking the inflow and outflow of baryons. Outflows are prevalent across the entire mass range, as is reaccretion. We find that between 40 and 80% of all metals removed from the galactic disk are later reaccreted. The outflows themselves are metal enriched relative to the ISM by a factor of 0.2 dex because of the correspondence between sites of metal enrichment and outflows. As a result, the metal mass loading factor scales as eta_metals \propto v_circ^-0.91, a somewhat shallower scaling than the total mass loading factor. We analyze the simulated galaxies within the context of analytic chemical evolution models by determining their net metal expulsion efficiencies, which encapsulate the rates of metal loss and reaccretion. We discuss these results in light of the inflow and outflow properties necessary for reproducing the mass-metallicity relation.Comment: Under review by ApJ. 21 pages, 15 figure

    Advanced Space Suit PLSS 2.0 Cooling Loop Evaluation and PLSS 2.5 Recommendations

    Get PDF
    From 2012 to 2015 The NASA/JSC AdvSS (Advanced Space Suit) PLSS (Primary Life Support Subsystem) team, with support from UTC Aerospace Systems, performed the build-up, packaging and testing of PLSS 2.0. A key aspect of that testing was the evaluation of the long-term health of the water cooling circuit and the interfacing components. Intermittent and end-of-test water, residue and hardware analyses provided valuable information on the status of the water cooling circuit, and the approaches that would be necessary to enhance water cooling circuit health in the future. The evaluated data has been consolidated, interpreted and woven into an action plan for the maintenance of water cooling circuit health for the planned FY (fiscal year) 2016 through FY 2018 PLSS 2.5 testing. This paper provides an overview of the PLSS 2.0 water cooling circuit findings and the associated steps to be taken in that regard for the PLSS 2.5 testing

    In-n-out: The Gas Cycle From Dwarfs To Spiral Galaxies

    Get PDF
    We examine the scalings of galactic outflows with halo mass across a suite of 20 high-resolution cosmological zoom galaxy simulations covering halo masses in the range 10^9.5-10^12\M. These simulations self-consistently generate outflows from the available supernova energy in a manner that successfully reproduces key galaxy observables, including the stellar mass–halo mass, Tully–Fisher, and mass–metallicity relations. We quantify the importance of ejective feedback to setting the stellar mass relative to the efficiency of gas accretion and star formation. Ejective feedback is increasingly important as galaxy mass decreases; we find an effective mass loading factor that scales as v-circ-2.2, with an amplitude and shape that are invariant with redshift. These scalings are consistent with analytic models for energy-driven wind, based solely on the halo potential. Recycling is common: about half of the outflow mass across all galaxy masses is later reaccreted. The recycling timescale is typically ~1 Gyr, virtually independent of halo mass. Recycled material is reaccreted farther out in the disk and with typically ~2–3 times more angular momentum. These results elucidate and quantify how the baryon cycle plausibly regulates star formation and alters the angular momentum distribution of disk material across the halo mass range where most cosmic star formation occurs

    Radiation Test Results for a MEMS Microshutter Operating at 60 K

    Get PDF
    The James Webb Space Telescope (JWST), the successor to the Hubble Space Telescope, is due to be launched in 2013 with the goal of searching the very distant Universe for stars that formed shortly after the Big Bang. Because this occurred so far back in time, the available light is strongly red-shifted, requiring the use of detectors sensitive to the infrared portion of the electromagnetic spectrum. HgCdTe infrared focal plane arrays, cooled to below 30 K to minimize noise, will be used to detect the faint signals. One of the instruments on JWST is the Near Infrared Spectrometer (NIRSPEC) designed to measure the infrared spectra of up to 100 separate galaxies simultaneously. A key component in NIRSPEC is a Micro-Electromechanical System (MEMS), a two-dimensional micro-shutter array (MSA) developed by NASA/GSFC. The MSA is inserted in front of the detector to allow only the light from the galaxies of interest to reach the detector and to block the light from all other sources. The MSA will have to operate at 30 K to minimize the amount of thermal radiation emitted by the optical components from reaching the detector array. It will also have to operate in the space radiation environment that is dominated by the MSA will be exposed to a large total ionizing dose of approximately 200 krad(Si). Following exposure to ionizing radiation, a variety of MEMS have exhibited performance degradation. MEMS contain moving parts that are either controlled or sensed by changes in electric fields. Radiation degradation can be expected for those devices where there is an electric field applied across an insulating layer that is part of the sensing or controlling structure. Ionizing radiation will liberate charge (electrons and holes) in the insulating layers, some of which may be trapped within the insulating layer. Trapped charge will partially cancel the externally applied electric field and lead to changes in the operation of the MEMS. This appears to be a general principle for MEMS. Knowledge of the above principle has raised the concern at NASA that the MSA might also exhibit degraded performance because, i) each shutter flap is a multilayer structure consisting of metallic and insulating layers and ii) the movement of the shutter flaps is partially controlled by the application of an electric field between the shutter flap and the substrate (vertical support grid). The whole mission would be compromised if radiation exposure were to prevent the shutters from opening and closing properly. energetic ionizing particles. Because it is located A unique feature of the MSA is that, as outside the spacecraft and has very little shielding, previously mentioned, it will have to operate at temperatures near 30 K. To date, there are no published reports on how very low temperatures (- 30K) affect the response of MEMS devices to total ionizing dose. Experiments on SiO2 structures at low temperatures (80 K) indicate that the electrons generated by the ionizing radiation are mobile and will move rapidly under the application of an external electric field. Holes, on the other hand, that would normally move in the opposite direction through the SiO2 via a "thermal hopping" process, are effectively immobile at low electric fields as they are trapped close to their generation sites. However, for sufficiently large electric fields (greater than 3 MV/cm) holes are able to move through the SiO2. The larger the field, the more rapidly the holes move. The separation of the electrons and holes leads to a reduced electric field within the insulating layer. To overcome this reduction in electric field, a greater external voltage will have to be applied that alters the normal operation of the device. This report presents the results of radiation testing of the MSA at 60 K. The temperature was higher than the targeted temperature because of a faulty electrical interconnect on the test board. Specifically, our goal was to determine whether the MSA would function propey after a TID of 200 krad(Si)

    Galaxies in a Simulated Λ\LambdaCDM Universe II: Observable Properties and Constraints on Feedback

    Get PDF
    We compare the properties of galaxies that form in a cosmological simulation without strong feedback to observations at z=0. We confirm previous findings that models without strong feedback overproduce the observed galaxy baryonic mass function, especially at the low and high mass extremes. Through post-processing we investigate what kinds of feedback would be required to reproduce observed galaxy masses and star formation rates. To mimic an extreme form of "preventive" feedback (e.g., AGN radio mode) we remove all baryonic mass that was originally accreted via "hot mode" from shock-heated gas. This does not bring the high mass end of the galaxy mass function into agreement with observations because much of the stellar mass in these systems formed at high redshift from baryons that originally accreted via "cold mode" onto lower mass progenitors. An efficient "ejective" feedback mechanism, such as supernova driven winds, must reduce the masses of these progenitors. Feedback must also reduce the masses of lower mass z=0 galaxies, which assemble at lower redshifts and have much lower star formation rates. If we monotonically re-map galaxy masses to reproduce the observed mass function, but retain the simulation's predicted star formation rates, we obtain fairly good agreement with the observed sequence of star-forming galaxies but fail to recover the observed population of passive, low star formation rate galaxies. Suppressing all hot mode accretion improves agreement for high mass galaxies but worsens the agreement at intermediate masses. Reproducing these z=0 observations requires a feedback mechanism that dramatically suppresses star formation in a fraction of galaxies, increasing with mass, while leaving star formation rates of other galaxies essentially unchanged.Comment: MNRAS in press. 15 pages, 5 figures, minimal changes from the first versio
    • …
    corecore